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A B S T R A C T

Night-time light (NTL) data from the Defense Meteorological Satellite Program (DMSP) Operation Linescan
System (OLS) provide important observations of human activities; however, DMSP-OLS NTL data suffer from
problems such as saturation and blooming. This research developed a self-adjusting model (SEAM) to correct
blooming effects in DMSP-OLS NTL data based on a spatial response function and without using any ancillary
data. By assuming that the pixels adjacent to the background contain no lights (i.e., pseudo light pixels, PLPs),
the blooming effect intensity, a parameter in the SEAM model, can be estimated by pixel-based regression using
PLPs and their neighboring light sources. SEAM was applied to all of China, and its performance was assessed for
twelve cities with different population sizes. The results show that SEAM can largely reduce the blooming effect
in the original DMSP-OLS dataset and enhance its quality. The images after blooming effect correction have
higher spatial similarity with Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer
Suite (VIIRS) images and higher spatial variability than the original DMSP-OLS data. We also found that the
average effective blooming distance is approximately 3.5 km in China, which may be amplified if the city is
surrounded by water surfaces, and that the blooming effect intensity is positively correlated to atmospheric
quality. The effectiveness of the proposed model will improve the capacity of DMSP-OLS images for mapping the
urban extent and modeling socioeconomic parameters.

1. Introduction

Night-time light (NTL) data records nocturnal artificial light on the
Earth's surface and provides unique observations for human activities
(Elvidge et al., 1997a; Elvidge et al., 2001). Two main datasets that
offer global coverage are available for NTL information, the digital
archive of annual composite images since 1992 from the Operational
Linescan System (OLS) instrument onboard Defense Meteorological
Satellite Program (DMSP) satellite and nighttime light images from the
Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard
the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite
launched in 2011 (Bennett and Smith, 2017; Elvidge et al., 2017). In
recent decades, NTL data have been widely used in socioeconomic and
environmental research, including urbanization delineation and spatial
distribution analyses (Small et al., 2005; Cao et al., 2009; Zhou et al.,
2014; Letu et al., 2015; Xie and Weng, 2017), economic development or
decline monitoring (Elvidge et al., 1997a; Henderson et al., 2012;

Rohner et al., 2013), population density mapping (Zhuo et al., 2009;
Townsend and Bruce, 2010), electricity consumption modeling (Lo,
2002; Letu et al., 2010; Townsend and Bruce, 2010; Cao et al., 2014;
Proville et al., 2017), environmental issues such as light pollution
(Cinzano et al., 2001; Longcore and Rich, 2004; Butt, 2012; Rodrigues
et al., 2012; Falchi et al., 2016), air quality (Wang et al., 2016) and CO2

emissions (Zhang et al., 2017; Proville et al., 2017).
DMSP-OLS provides the longest observations of NTL information,

from 1992 to 2013, an unparalleled dataset for studying historical ar-
tificial lights; however, it suffers from four main problems: coarse
spatial resolution, lack of onboard calibration, saturation and blooming
(Imhoff et al., 1997; Small et al., 2011; Small et al., 2005; Elvidge et al.,
2007; Bennett and Smith, 2017). The spatial resolution of DMSP-OLS
data is 2.7 km, whereas NPP-VIIRS offers a finer resolution of 742m
(Bennett and Smith, 2017). DMSP-OLS NTL annual composite data
available from 1992 to 2013 were acquired by sensors onboard six
different satellites without onboard calibration mechanisms (Elvidge
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et al., 2009). Pandey et al. (2017) summarized several algorithms for
the relative calibration of DMSP NTL data based on the concept of
pseudo-invariant features (PIFs) and found that global-scale calibration
methods outperform regionally based calibration methods. The sa-
turation problem resulted from the small (6-bit) quantization and low
dynamic range of OLS data, which led to the inability of the OLS to
record light brighter than a digital number (DN) value of 63 (Elvidge
et al., 1997b). Combined with information about vegetation indices,
land surface temperature (LST) or socioeconomic statistics, researchers
have developed several methods to effectively mitigate the saturation of
OLS data (Lu et al., 2008; Zhang et al., 2013; Zhuo et al., 2015; Hao
et al., 2015; Cao et al., 2014). The blooming effect, or overglow, refers
to the lighted areas detected by the OLS larger than the geographic
extents of the light sources, which leads to the overestimation of the
extent of urban areas (Small and Elvidge, 2013). The blooming effect is
more serious for coarser nighttime light images (Kyba et al., 2014). For
example, the blooming effect was also observed in monthly VIIRS
composite data (Levin, 2017) but was not as serious as in DMSP-OLS
data. The blooming effect brings difficulties, bias, and challenges to the
applications of nighttime light data. However, only a few studies have
quantitatively evaluated the blooming effect (Small et al., 2005;
Townsend and Bruce, 2010; Hao et al., 2015), and no consensus on
blooming effect correction has yet been reached (Bennett and Smith,
2017).

The possible reasons for the blooming effect include the large
footprints of the OLS sensor (Elvidge et al., 2004; Elvidge et al., 2013),
the scattering of light in the atmosphere, and the accumulation of geo-
location errors in the compositing process (Richter, 1996; Small et al.,
2005; Small and Elvidge, 2013; Kyba et al., 2014). Existing studies have
also found that the blooming effect is related to the equivalent diameter
for contiguous lighted areas (Small et al., 2005), light source strength
(Townsend and Bruce, 2010), adjacent water or snow surfaces (Bennett
and Smith, 2017), and thin clouds (Letu et al., 2015). To reduce the
blooming effect in urban area detection, Zhou et al. (2014) used a water
mask to exclude pixels with water percentages over 50% along shor-
elines. Some saturation correction methods, such as the Vegetation
Adjusted NTL Urban Index (VANUI) (Zhang et al., 2013) and the Ve-
getation Temperature Light Index (VTLI) (Hao et al., 2015), can also
alleviate the blooming effect. However, since their main purposes are
limited, their effectiveness and flexibility to tackle the blooming effect
with inadequate validations is not clear. Small et al. (2005) suggested
employing a scale-dependent blooming correction procedure after
finding a linear relationship between lit area and blooming distance for
10 illuminated islands as samples. However, the method's effectiveness
over non-coastal areas has not yet been verified. Townsend and Bruce
(2010) developed the Overglow Removal Model (ORM), which corrects
the blooming effect by using the relationship between regional light
intensity and blooming distance considering the effects of annual at-
mospheric conditions, topography and elevation. However, the method
needs auxiliary data, which may not always be available for locations in
developing countries where NTL imagery may provide the most insight
regarding economic development. Li et al. (2017) simulated the DMSP-
OLS composites from the NPP-VIIRS images by using a power function
and a Gaussian low-pass filter. This method can reduce the blooming
effect in the simulated DMSP-OLS images because the NPP-VIIRS
images have little blooming effect (Bennett and Smith, 2017). However,
this method is not able to correct the DMSP-OLS images before 2012,
when NPP-VIIRS images became available. Recently, Abrahams et al.
(2018) deblurred the DMSP images based on the assumption that light
was blurred via a symmetric Gaussian point-spread function (PSF); the
dimension of the PSF could be calibrated by the frequency of illumi-
nation. This new deblurring method is effective in improving DMSP
annual composite images. However, it is limited in processing annual
composite images because it needs an auxiliary dataset that records the
frequencies of illumination of each pixel, which may be less accurate in
cloudy regions such as tropical countries.

To this end, we developed the self-adjusting model (SEAM) based on
a spatial response function (SRF) to correct the blooming effect without
using other ancillary data. We tested the SEAM model to correct the
blooming effect in China and evaluated the effectiveness of the SEAM
model in twelve cities with various population scales by comparison
with NPP-VIIRS data, the VANUI and VTLI methods, as well as the
accuracy of urban area extraction. This simple blooming effect correc-
tion model is expected to be used as a preprocessing method for the
DMSP-OLS NTL data.

2. Data and methods

2.1. Study area and data

We used DMSP-OLS stable NTL data for China in 2013 (Fig. 1a) to
test the blooming correction method proposed by this study. Twelve
cities with different size of population and levels of economic devel-
opment were selected to visually and quantitatively evaluate the per-
formance of the blooming effect correction model. These cities are ca-
tegorized into six groups by population:> 10 million (Shanghai and
Beijing), 5–10 million (Chongqing and Guangzhou), 3–5 million
(Harbin and Hangzhou), 1–3 million (Lanzhou and Luoyang), 0.5–1
million (Xinyu and Xingtai), and< 0.5 million (Lhasa and Lijiang). The
twelve center cities are marked by black points in Fig. 1(a). Fig. 1(b)
shows an enlarged sub-region of the DMSP-OLS image covering Beijing.
Because ground truth values of light intensity are not available, the
NPP-VIIRS nighttime light images in 2013 are used as a reference to
evaluate the effectiveness of the proposed model, assuming the
blooming effects in the NPP-VIIRS images are sufficiently weak (Li and
Zhou, 2017) (Fig. 1c). The DMSP-OLS and NPP-VIIRS nighttime light
data (hereafter DMSP and VIIRS for short) were downloaded from the
National Oceanic and Atmospheric Administration (NOAA) National
Centers for Environmental Information (http://ngdc.noaa.gov/eog/
download.html). The DMSP image downloaded was
“F182013.v4c_web.stable_lights.avg_vis.tif”. By geolocation processing,
the stable lights were summarized to grids with a nominal resolution of
30 arc sec, which equals 1 km at the equator. For convenience, this
study used “pixel” to represent the “grid” of the DMSP stable NTL data.
Four seasonal VIIRS datasets were downloaded in 2013, and we used
the average of the four seasonal VIIRS images as the yearly VIIRS image
in 2013 to match the DMSP image. All images were re-projected to the
same coordinate system, WGS_1984_UTM49N. Then, the VIIRS data
were resampled to the resolution of DMSP images and co-registered to
the DMSP images using 20 GCPs selected from isolated cities without
saturated pixels (see details in Supplementary Data).

To assess the performance of the proposed blooming effect removal
model, we used Moderate Resolution Imaging Spectroradiometer
(MODIS) Normalized Difference Vegetation Index (NDVI) and Land
Surface Temperature (LST) products to implement two existing DMSP
correction models: VANUI (Zhang et al., 2013) and VTLI (Hao et al.,
2015). The MODIS monthly composite of NDVI and nighttime LST data
for 2013 were selected for this study. The results from the proposed
method were compared with these two existing methods. We also
compared urban extent extracted from the blooming-adjusted results
with a reference urban extent map, the Global Urban Footprint (GUF)
map (Esch et al., 2017). The GUF data are provided by the German
Aerospace Center (DLR, https://www.dlr.de/) with a spatial resolution
of 2.8 arc sec (approximately 75m in mid-latitudes). This dataset was
generated using data collected by the TerraSAR-X/TanDEM-X satellites
between 2011 and 2012, which matches the time of the NTL data in this
study.

The other data used to aid this research included the ground-level
PM2.5 data in 2013 (van Donkelaar et al., 2016) (http://fizz.phys.dal.
ca/~atmos/martin/). This dataset is satellite-derived and adjusted by
geographically weighted regression with a 0.01° grid. We also used the
GlobeLand30-2010 product (Chen et al., 2015; Chen et al., 2016)
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(http://www.globeland30.org) to provide further land cover informa-
tion such as water and urban area.

2.2. Self-adjusting blooming effect correction model

(1) Theoretical basis

Theoretically, the blooming effects on individual pixels in DMSP
images can be described by the sensor spatial response function (SRF),
which is usually modeled as kernel functions, such as the Gaussian
function and inverse distance function (Liang, 2003). In this study, the
inverse distance function is used to approximate the SRF considering
that light intensity attenuates with squared distance:

= =SRF f d a
d

( ) 2 (1)

where d is the spatial distance corresponding to the sensor ground in-
stantaneous field of view (IFOV) and a is a coefficient. In a satellite
image, the SRF implies the degree of signals beyond the pixel size that
contribute to the pixel value, i.e., a target pixel value contains the
contributions of it neighboring pixels. Therefore, the observed value of
a target pixel (R) can be written as:

= × + × +
=

R R f d R b( )
i

N

i i0
1 (2)

The first term on the right side of Eq. (2) indicates the light signal
from the target pixel, and the second term is the incoming light from
neighboring pixels via the SRF. R0 is the actual light emitted by the
target pixel, β is a coefficient representing the percentage of remaining
light after deducting out-scattering of R0, Ri is the pixel value of the i-th
neighboring pixel selected from a moving window, N is the total
number of neighboring pixels, and b is the background value. The pixel
value Ri of the i-th neighboring pixel includes its actual light and the
blooming light it received; Ri in Eq. (2) thus allows the model to count
both the direct blooming effect (from neighbors to the target) and the
indirect blooming effect (from other pixels to neighbors and then to the
target). In this study we assumed that out-scattering is linearly related

to the intensity of the light source, i.e., β is a constant value. We also
assumed that neighboring pixels that are brighter than the target pixel
(i.e., Ri > R) make a net blooming contribution because the out-scat-
tering of the target pixel can offset the contribution from darker
neighboring pixels. Therefore, the key to remove the blooming effect is
to model the ambient incoming light, i.e., to estimate the SRF in Eq. (2).
For a given DMSP pixel, the R and Ri of its neighbors are known but not
R0. To make Eq. (2) solvable, we need to search some pixels in the
DMSP image that have R0 equal to zero, i.e., these pixels do not have
any artificial light source and are only lit by neighbors due to the
blooming effect. We defined these pixels as ‘pseudo light pixels’ (PLPs),
for which the DN values (R') entirely come from the neighboring light
pixels:

= × +
=

R f d R b( )
i

N

i i
1 (3)

Taking Eq. (1) into Eq. (3), we obtain:

= × +
=

R a R
d

b
i

N
i

i1
2 (4)

In Eq. (4), the unknown coefficients a and b can be estimated by
regression analysis using the PLPs and their neighboring light pixels.

(2) Self-adjusting model implementation steps
Step 1: Search for pseudo light pixels

Based on the above concept, this first step is to find the PLPs in a
DMSP image to estimate the coefficients a and b. As the diagram shows
in Fig. 2, the intensity of artificial lights in DMSP images generally
decreases from a city center to its edges (Zhou et al., 2015), with the
brightest pixels (e.g., DN=63) located in the city centers and the
darkest pixels (DN=0) close to rural areas (background areas). We
thus assume that PLPs can be selected from pixels next to the urban
edges, i.e., the pixel itself shows weak brightness (pixel value > 0) but
one or more of its eight neighbors are dark (pixel value=0) in the
DMSP/OLS images (e.g., the light gray pixels in Fig. 2). As a result, the
DN values of these pixels should mainly come from their neighboring

Fig. 1. The DMSP-OLS image of China in 2013 (a). Right column shows the enlarged DMSP-OLS image (b) and NPP-VIIRS image (c) for Beijing (black box in a). The
green points with serial numbers are the 20 cities selected to investigate the effective blooming distance (see Table 3). The black points indicate the 12 cities used for
evaluation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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pixels due to the blooming effect. These pixels are selected as the PLPs
and their pixel values can be described by Eq. (4).

Step 2: Select effective neighboring pixels for PLPs

For each PLP, we need to select its effective neighboring pixels, i.e.,
the pixels within the effective blooming distance, for calculating its
value by Eq. (4). By visual comparison between DMSP image and a
referenced urban extent derived from a global 30-m land cover map
(Chen et al., 2015) for 20 isolated cities in China with relatively regular
shape (Fig. 1a, marked by green points and labeled by numbers), the
urban extent from GlobeLand30 was used as a reference to measure the
blooming effect distance of DMSP data. For each PLP of a city, we can
search a nearest distance to the urban region of GlobeLand30, and the
average distance of all the PLPs to their nearest urban region represent
the effective blooming distance of the city. The effective blooming
distance ranges from 2.22 to 4.38 km (see Table 3 in Discussion Session
for details), and the average value is 3.53 km, which is equivalent to 3.5
pixels in DMSP images. Based on Eq. (1), the neighboring pixels beyond
3.5 km should have very weak influence on PLPs. Therefore, a 7× 7
moving window (with a PLP as the center) was suggested to search the
effective neighboring pixels (Fig. 2). For each PLP, only the pixels
within the 7× 7 window with DN values larger than that of the PLP are
chosen as effective neighboring pixels to compute the weighted sum in
Eq. (4). The spatial distance between the PLP and its neighboring pixels
is calculated as the Euclidean distance between the centers of the pixels.

Step 3: Remove blooming effect for each bright DMSP pixel

For each bright DMSP pixel with DN larger than 0 (named as the
target pixel), we can apply Eq. (2) to estimate the light intensity ex-
cluding the blooming effect if we know the coefficients a and b. In one
DMSP image, we can select enough PLPs and their effective neighboring
pixels following step 1 and 2 and then estimate a and b by linear re-
gression. However, the estimated a and b are global parameters for the
entire DMSP image, which may not be optimal values for removing the
blooming effect for all individual DMSP pixels. Considering that the
intensity of the blooming effect might be affected by some local factors,
such as the total light intensity of surrounding urban pixels (Townsend
and Bruce, 2010), local atmospheric conditions (Small and Elvidge,
2013) and adjacent water bodies or snow (Bennett and Smith, 2017),
the coefficients in Eq. (4) may change pixel-by-pixel, and local PLPs
were thus selected to estimate the coefficients for each target pixel.
Specifically, for each DMSP pixel with DN larger than 0, PLPs were

selected within a radius range of 150 km; a 150-km radius was used
because (1) enough PLPs can be selected and (2) atmospheric condi-
tions (e.g., particulate matter concentrations, PM2.5 and PM10) within
this range are relatively uniform (Hu et al., 2014). For each PLP, its
effective neighboring pixels were selected within the 7×7 window
following step 2. Then, the values of PLPs and the weighted sum of their
effective neighboring pixels were used as dependent and independent
variables to estimate parameters a and b in Eq. (4) by ordinary least
squares linear regression. Finally, for the target DMSP pixel, its pixel
value without blooming effects (R⁎) can be estimated by:

= × +
=

R R a R
d

b
i

N
i

i1
2

(5)

where R⁎ is the first term on the right side of Eq. (2), β× R0, the real
artificial light after deducting out-scattering. a and b are estimated
coefficients. Ri is the DN value of the effective neighboring pixels of the
target pixel and Ri > R. Extremely large difference between adjacent
pixels may exist in the original DMSP image. This extreme large dif-
ference will lead to unreliable results (e.g., negative brightness values)
of blooming adjustment using Eq. (5). To mitigate the impact of this
extreme situation, we then introduced a mean filter by using a 3×3
moving window to reduce the extremely large differences among ad-
jacent pixels while maintaining the spatial pattern of the original DMSP
image.

2.3. Performance assessment of blooming effect removal

To evaluate the performance of SEAM for blooming effect removal,
we compared SEAM with two other vegetation adjusted methods,
VANUI (Eq. 6) and VTLI (Eq. 7), to correct the DMSP data. VANUI
combines the MODIS NDVI with the NTL data based on the hypothesis
that the vegetation abundance is highly negatively correlated with the
distribution of impervious surfaces (Zhang et al., 2013). VTLI in-
corporates the land surface temperature (LST) information with the
vegetation index due to the temperature being higher in the center of
the city (Hao et al., 2015). The monthly maximum composite of NDVI
and nighttime LST for MODIS in 2013 was used to calculated VANUI
and VTLI, respectively:

= ×VANUI (1 NDVI) NTL (6)

= × ×VTLI (1 NDVI) LST NTL (7)

In summary, for the original DMSP image, three blooming-adjusted

Fig. 2. Diagram of selecting pseudo light pixels (PLPs) and their effective neighboring pixels within a 7×7 moving window.
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results were obtained by the proposed SEAM model (hereafter DMSP-
BC) and the VANUI and VTLI methods, respectively. Two evaluation
indicators, the correlation coefficient between the evaluated image and
the reference image (i.e., VIIRS image) and the spatial variability of the
evaluated image, were used to assess the effectiveness of different
models for blooming effect removal.

1) Correlation coefficients (R) between VIIRS images and the evaluated
images.

R is used to measure the correlation between VIIRS image and
DMSP, DMSP-BC, VANUI and VTLI images. The SEAM model cannot
remove the saturation effect, and pixels with DN values of 63 in the
DMSP images and corresponding areas in the VIIRS images were thus
excluded when calculating the correlation coefficients. If blooming ef-
fect correction is effective, the blooming-adjusted images are expected
to have higher R values with the VIIRS image than with the original
DMSP image. The correlation coefficients were computed for each city
using pixels within the minimum bounding rectangle of the city extent
detected from the VIIRS image.

2) Spatial variability of pixel values within urban areas of each nighttime
image.

Theoretically, the blooming effect makes DMSP images ‘smooth’ and
decreases the spatial variability of pixel values in urban regions com-
pared with the corresponding VIIRS images, which have minimal
blooming effects. After correcting the blooming effect with the SEAM
method, the spatial variability of DMSP-BC is expected to be higher
than that of the original DMSP image. Since the DN values of DMSP
images and VIIRS images are not comparable in value, we used the
coefficient of variation (CV) to measure the relative spatial variability:

=CV std R mean R( )/ ( ) (8)

where R is the DN value in each city and std(R) and mean(R) are the
standard deviation and mean of the DN values, respectively. CV was
calculated for VIIRS, DMSP, DMSP-BC, VANUI and VTLI images.

We also evaluated the performance of NTL data for urban area ex-
traction by comparing the results from DMSP and DMSP-BC with Global
Urban Footprint (GUF) data as reference data. Because GUF data have
higher spatial resolution (approximately 75m in mid-latitudes), we first
aggregated the data to 1-km spatial resolution (GUF-1 km) to match the
DMSP data. Then, we adopted the local optimized threshold method
(Cao et al., 2009) to extract urban areas from DMSP and DMSP-BC
images. The local optimized threshold is the one among all tested
thresholds that can obtain the highest Kappa coefficient of the extracted
urban areas using GUF-1 km as reference data.

3. Results

3.1. Parameter estimation in the SEAM model

As explained in Section 2.2, for each pixel with DN values lager than
0 in the DMSP image of China, a local regression model was built to
estimate parameters a and b using PLPs selected in a neighborhood.
Fig. 3 shows the spatial distribution of the pixel-based regression re-
sults. The coefficients of determination (R2) for the pixel-based re-
gression models are plotted in Fig. 3(a). Over 97% of the pixels achieve
a high coefficient of determination (> 0.7), whereas some pixels in
coastal areas and inland northwest areas have lower coefficients of
determination. The regression models for pixels with coefficients of
determination<0.7 were replaced by those with the highest coeffi-
cients of determination close to these pixels. Fig. 3(b) indicates the
spatial distribution of regression coefficient a in Eq. (4), which re-
presents the intensity of the blooming effect. A higher regression
coefficient a indicates a stronger blooming effect and more lights
scattered from a pixel to its neighborhood. We found that the regression
coefficient a is positively correlated with annual mean PM2.5 con-
centrations (R=0.5677, p < 0.0001) for all of China, excluding the
pixels with DN=0. This result suggests that the intensity of the
blooming effect may be influenced by atmospheric conditions.

3.2. Visual evaluation

Fig. 4 shows the original DMSP images, the VIIRS images, the
DMSP-BC images, and the VANUI and VTLI images of the twelve cities
with populations from<0.5 million to over 10 million. To make these
images visually comparable, the NPP-VIIRS, VANUI and VTLI images
were linearly stretched to the range of the DMSP data using the
minimum and maximum pixel values. It can be observed from Fig. 4
that the DMSP data suffered from a strong blooming effect when
compared with the VIIRS images, whereas the DMSP-BC images could
shrink the boundaries of urban areas and decrease the values for urban
outskirts. Compared with the DMSP images, the DMSP-BC, VANUI and
VTLI images have higher spatial similarity with the VIIRS images. In
large cities, such as Shanghai, Beijing, Guangzhou and Hangzhou, we
can observe some line objects (e.g., roads) in the DMSP-BC or VIIRS
images that are totally covered by the blooming effect in the original
DMSP images. However, for Shanghai and Beijing in the VANUI and
VTLI images, the urban centers have low DN values, which might result
from the high vegetation coverage in these regions. In Chongqing,
Harbin, Lanzhou, Luoyang, Xinyu, Xingtai, Lhasa and Lijiang, dark
pixels in the VIIRS images (the rural areas) were brightened in the
original DMSP images due to the effect of blooming, whereas these
pixels are adjusted to nearly zero in the DMSP-BC images. Visual

Fig. 3. Regression results for pixel-based regression models; (a) coefficients of determination (R2), and (b) regression coefficient a.
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inspection of these twelve cities indicates that the SEAM model can
mitigate the blooming effect of the original DMSP image.

Fig. 5 shows the DN values of the transects in the DMSP images
(blue lines), VIIRS images (black lines) and DMSP-BC images (red lines)
for the twelve cities. It can be observed that all three NTL images have
lower DN values in rural areas and higher values in urban areas,
especially in the city center. The values of the DMSP-BC images are
smaller than those of the original DMSP images after removing the
blooming parts, especially in the rural regions. These transects also
show that the variations of DN values in the DMSP-BC images have
greater similarity with the VIIRS images compared with the DMSP
images. Moreover, the variation of DN values in the urban areas of the

DMSP images is smaller than those of the DMSP-BC and VIIRS images.
For transects of Shanghai, Beijing and Guangzhou (Fig. 5a, b and d),
many saturated values in the DMSP images close to urban cores were
also adjusted into lower values in the DMSP-BC images. This result
suggests that the SEAM model can also partly remove the effect of sa-
turation. In the rural areas where DN values of VIIRS are close to zero,
the DMSP images maintain high values of approximately 10–20 (e.g.,
the west part of Lanzhou, Luoyang and Xinyu in Fig. 5g, h and i) due to
the blooming effect, and the DN values of these pixels in the DMSP-BC
image were adjusted to 0–5. These transects suggest that the SEAM
model can effectively remove the blooming effect and partly remove the
saturation effect in DMSP images.

Fig. 4. Comparison of the NTL images in the twelve cities of China: (a) the original DMSP-OLS images, (b) the NPP-VIIRS images, (c) the DMSP-BC images, (d) the
VANUI images, and (e) the VTLI images. The black lines are transects whose values are plotted in Fig. 5.
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3.3. Quantitative evaluation

Table 1 lists the correlation coefficients (R) with VIIRS images for
DMSP, DMSP-BC, VANUI and VTLI and CV values calculated by Eq. (8)
for DMSP, VIIRS, DMSP-BC, VANUI and VTLI in twelve selected cities
and the whole of China, excluding pixels with DN equal to 0 in the
DMSP-BC image. When comparing original DMSP and DMSP-BC
images, the correlation coefficients with VIIRS images in the whole of
China are 0.62 and 0.69 for the original DMSP and DMSP-BC images,
respectively, whereas all twelve cities have higher correlation coeffi-
cients after blooming effect correction by the SEAM model. The in-
crease of the correlation coefficients indicates that the DMSP-BC images
are more similar to the VIIRS images compared with the original DMSP
images. In terms of spatial variability, the images after blooming effect
removal for all twelve cities can have higher CVs than the original
DMSP images. The CV values of the twelve cities from DMSP-BC are
between the CV values from the DMSP and VIIRS images, and the CVs

of the whole of China are 1.53, 0.94 and 2.64 for DMSP-BC, DMSP, and
VIIRS images, respectively, which suggests that the spatial variability of
the DMSP images was enhanced after blooming effect correction.
However, the spatial variability of the DMSP-BC images is still not as
high as that of the VIIRS images. The possible reasons include the ex-
istence of saturated pixels, the discrepancy of spatial resolutions be-
tween DMSP and VIIRS, and the remaining blooming effect.

The results in Table 1 show that in some cities the DMSP-BC images
from SEAM perform better than VANUI and VTLI. The correlation re-
sults show lower values for VANUI and VTLI in Shanghai, Beijing,
Guangzhou, Hangzhou, Lhasa and Lijiang. The possible reason for this
result may be that the high percentage of green space makes the as-
sumption of the two indexes invalid. For the other cities, SEAM's results
are comparable with those of VANUI and VTLI. These results suggest
that the auxiliary data, such as NDVI and LST, may introduce extra
errors in blooming correction. The CV values indicate similar spatial
variabilities for SEAM, VANUI and VTLI. We noticed that VANUI and

Fig. 5. Profiles of transects (the black lines in Fig. 4) of Shanghai (a), Beijing (b), Chongqing (c), Guangzhou (d), Harbin (e), Hangzhou (f), Lanzhou (g), Luoyang (h),
Xinyu (i), Xingtai (j), Lhasa (k), and Lijiang (l) from the DMSP, VIIRS and DMSP-BC images.

Table 1
The quantitative evaluation of the DMSP, DMSP-BC, VANUI and VTLI images for the twelve cities and all of China.

City/province Populationa (million) Correlation with VIIRS (R) Spatial variability (CV)

DMSP DMSP-BC VANUI VTLI DMSP VIIRS DMSP-BC VANUI VTLI

Shanghai/Shanghai 13.64 0.643 0.769 0.648 0.661 0.409 1.080 0.797 0.535 0.523
Beijing/Beijing 12.45 0.629 0.784 0.751 0.760 0.533 1.594 1.103 0.932 0.948
Chongqing/Chongqing 8.52 0.785 0.801 0.841 0.845 0.676 1.090 1.021 1.376 1.394
Guangzhou/Guangdong 6.87 0.687 0.746 0.694 0.691 0.690 1.601 1.075 1.098 1.139
Harbin/Heilongjiang 4.74 0.612 0.768 0.775 0.781 0.917 3.128 1.721 2.084 2.111
Hangzhou/Zhejiang 4.51 0.636 0.698 0.605 0.615 0.332 1.070 0.705 0.720 0.724
Lanzhou/Gansu 2.47 0.702 0.747 0.772 0.780 0.951 2.453 1.590 1.214 1.246
Luoyang/Henan 1.93 0.771 0.797 0.877 0.882 0.786 1.652 1.311 1.327 1.352
Xinyu/Jiangxi 0.89 0.731 0.744 0.820 0.824 0.787 1.681 1.305 1.376 1.392
Xingtai/Hebei 0.87 0.725 0.738 0.811 0.815 0.717 1.527 1.205 1.176 1.193
Lhasa/Xizang 0.30 0.680 0.685 0.649 0.662 0.796 1.904 1.314 1.098 1.122
Lijiang/Yunnan 0.15 0.706 0.877 0.808 0.770 0.920 2.287 1.470 1.228 1.184
Whole China / 0.619 0.694 0.702 0.711 0.936 2.639 1.530 1.538 1.574

a The populations of each city in 2013 were collected from the China City Statistical Yearbook 2014 (National Bureau of Statistics of China, 2014).
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VTLI show comparable or even better results than SEAM in some cities;
however, the axillary datasets required by these methods impede their
applicability.

3.4. Urban area extraction

The results of urban areas extraction are shown in Fig. 6 and
Table 2. Fig. 6 indicates that the spatial distributions of the urban areas
are more similar to the GUF data after blooming effect removal. For
example, the urban region of Shanghai extracted from the DMSP data
by the local optimal threshold is only the urban core area, whereas the
DMSP-BC result could extract the tiny urban regions that also exist in

the GUF image. Table 2 lists the urban areas of the 12 cities extracted
from the DMSP and DMSP-BC images as well as the reference urban
areas from the GUF data. Table 2 also shows differences in urban areas
between GUF and DMSP (denoted as Difference_DMSP) and between
GUF and DMSP-BC (denoted as Difference_DMSP-BC). From Table 2 we
find that the areas of the urban areas extracted from the DMSP-BC
images are closer to the reference values than those from the DMSP
data. The kappa coefficients in Table 2 also confirm that urban areas
extracted from DMSP-BC are more similar to the GUF reference than
those from DMSP. In conclusion, DMSP images after removing the
blooming effect by the SEAM model can obtain more accurate urban
extents than the original DMSP data.

Fig. 6. Comparison of the urban area of (a) the Global Urban Footprint images at 1-km resolution (GUF-1 km) and urban area extracted from (b) DMSP-OLS images
and (c) DMSP-BC images in the twelve cities of China.

Table 2
Urban areas extracted from the DMSP and DMSP-BC images for the twelve cities (unit= km2).

City/province Kappa for DMSP Kappa for DMSP-BC Area from DMSP Area from DMSP-BC Area from GUF Difference_DMSP Difference_DMSP-BC

Shanghai/Shanghai 0.7302 0.7382 2399 2798 2798 399 0
Beijing/Beijing 0.7756 0.8437 3754 4294 4359 605 65
Chongqing/Chongqing 0.5181 0.6604 1058 992 711 347 281
Guangzhou/Guangdong 0.7364 0.7950 11,274 10,962 9221 2053 1741
Harbin/Heilongjiang 0.6718 0.8120 975 1153 1266 291 113
Hangzhou/Zhejiang 0.6200 0.6317 2005 1908 1712 293 196
Lanzhou/Gansu 0.5925 0.7823 359 320 330 29 10
Luoyang/Henan 0.6652 0.8639 518 596 672 154 76
Xinyu/Jiangxi 0.6401 0.7305 177 205 209 32 4
Xingtai/Hebei 0.4713 0.6916 500 495 576 76 81
Lhasa/Xizang 0.3767 0.4581 120 86 99 21 13
Lijiang/Yunnan 0.7160 0.8843 65 56 59 6 3
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4. Discussion and conclusions

DMSP datasets are useful for studying regional economic develop-
ment because of their strong relationship with economic development,
energy consumption and population. However, DMSP datasets severely
suffer from saturation and blooming effects. This research proposed a
simple blooming effect correction method, the self-adjusting model
(SEAM), based on spatial response functions without using any ancil-
lary data. The SEAM model was tested in the whole of China and
produced blooming-effect-corrected images, i.e., DMSP-BC, compared
with the original DMSP and NPP-VIIRS images. The visual and quan-
titative evaluations as well as the results of urban area extraction sug-
gested that the SEAM model can largely remove the blooming effect in
the original DMSP dataset and enhance its spatial quality.

The greatest strength of the SEAM method is that it estimates the
important parameters in the spatial spread function from the DMSP
image itself rather than requiring any other ancillary data, and the
estimated parameters are then used to remove blooming effects on all
DMSP pixels. This advantage makes the SEAM method very applicable
and easy to implement. In contrast, existing methods, such as the fre-
quency threshold method (Small et al., 2005) and the overglow removal
model (Townsend and Bruce, 2010), need other ancillary datasets and
extra effort. The frequency threshold method (Small et al., 2005) needs
urban extent derived from Landsat images to determine the optimal
frequency threshold, and this study also suggested that it is very diffi-
cult to find one threshold that works for a majority of cities in the
world. The overglow removal model is an iterative process that needs
administrative division boundaries as masks and census population data
to stop the iterative process (Townsend and Bruce, 2010); moreover,
this model was only tested in Australia due to the availability of an
ancillary dataset.

The second strength of the SEAM method is that the SEAM model
was developed based on reasonable assumptions, one of which is that
DMSP images have pseudo light pixels (PLPs), i.e., pixels containing
little artificial light source but lit by neighboring light sources. The
pixels adjacent to the background were defined as PLPs, and their
neighbors with larger DN values were used as neighboring light sources.
Such PLPs should exist in any countries that have cities visible in the
DMSP images. Another assumption is that the effective blooming dis-
tance is approximately 3.5 km, and a 7× 7 moving window was thus

used to removing blooming from the neighboring pixels. We in-
vestigated the effective blooming distance in 20 isolated cities using a
land cover product, GlobeLand30 (Chen et al., 2015; Chen et al., 2016).
Table 3 lists the effective blooming distances and the average light
intensities measured from the DMSP image, mean concentrations of
PM2.5 at ground-level (van Donkelaar et al., 2016) and neighboring
water areas of the 20 cities. The results indicate that the smallest dis-
tance is 2.22 km in Turpan (No. 04 in Fig. 1a) and the largest is 4.38 km
in Jinchang (No. 08 in Fig. 1a). The average distance for 20 cities is
3.53 km, which is equivalent to 3.5 pixels in DMSP images. Therefore, it
is reasonable to use the 7× 7 window to define the neighboring pixels
whose blooming light can reach the pixel at the window center. We also
found that this effective blooming distance is not related to the average
light intensity of the city (R= 0, p=0.50) and PM2.5 concentration
(R=0.10, p=0.35), which suggests that the 7×7 window is good for
cities with different sizes and under different atmospheric conditions.
An experiment using different window sizes suggests that the proposed
method is not very sensitive to the window size (see Supplementary
Data). Therefore, the 7×7 window should obtain acceptable accuracy
and is recommended for most areas, although we suggest further stu-
dies to test the parameter in more countries. Note that the effective
blooming distance may be longer than 3.5 km in coastal cities or cities
with many water surfaces. From the 20 cities listed in Table 3, the ef-
fective blooming distance is positively correlated to the water area
surrounding a city (R=0.53, p < 0.05). Although the 7× 7 window
can obtain satisfactory results of blooming effect removal by the SEAM
model for coastal cities (see Supplementary Data), a larger window is
recommended for processing DMSP images in coastal areas.

The third strength is that the proposed SEAM method optimizes the
parameters in the adjustment model locally rather than globally.
Blooming effect intensity, represented by the regression coefficient a
(Fig. 3b), was found to be positively correlated with the annual mean
PM2.5 concentration (R=0.5677, p < 0.0001), which suggests that
the blooming effect is strengthened by the scattering of aerosol particles
in the air (Xu et al., 2015). Considering that the PM2.5 concentration
varies in space, it is necessary to build the adjusting model for removing
the blooming effect in DMSP images locally.

In this study, we only tested the SEAM model in China, and more
countries should be used to further evaluate the effectiveness of our
method. We did not compare the SEAM model with many other

Table 3
Effective blooming distance for 20 cities in China.

Serial number City/province Effective blooming distance
(km)

Average light intensity of the
city (DN)

PM2.5 concentration (μg/m3) Water area surrounding the city
(km2)a

01 Xilinhot/Inner Mongolia 4.08 15.37 16.77 1.24
02 Hami/Xinjiang 3.31 23.13 18.30 0.21
03 Korla/Xinjiang 2.49 13.93 17.80 0.46
04 Turpan/Xinjiang 2.22 14.70 16.39 0.00
05 Jiuquan/Gansu 2.84 14.14 29.10 0.35
06 Bayannur/Inner Mongolia 2.36 23.10 23.79 0.00
07 Xinzhou/Shanxi 3.27 19.15 31.61 0.00
08 Jinchang/Gansu 4.38 16.60 36.35 1.18
09 Yan'an/Shaanxi 2.73 10.65 38.20 1.42
10 Yushu/Qinghai 3.36 13.38 31.12 1.00
11 Delingha/Qinghai 3.63 13.40 43.73 0.84
12 Tianshui/Gansu 4.39 14.92 6.65 3.89
13 Xuancheng/Anhui 3.31 12.36 64.36 0.22
14 Lhasa/Xizang 4.35 18.54 29.64 9.99
15 Enshi/Hubei 3.07 16.61 27.83 0.18
16 Jiujiang/Jiangxi 3.74 19.66 29.19 3.45
17 Chongqing/Chongqing 4.32 14.29 29.35 0.59
18 Huaihua/Hunan 4.33 17.16 39.42 10.56
19 Ji'an/Jiangxi 4.01 14.72 31.50 0.21
20 Kaili/Guizhou 4.33 15.40 32.26 2.11

Average 3.53 16.06 29.67 1.89

a The water area surrounding each city was calculated by the range of effective blooming distance for each city. Both the urban extent and water surface were
provided by the GlobeLand30–2010 land cover product.
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methods, such as the ORM model (Townsend and Bruce, 2010) because
it is difficult to collect the auxiliary data required by these methods.
Some saturation pixels remained in the blooming-effect-corrected
images for big cities, e.g., Shanghai, Beijing, Guangzhou and Harbin
(Fig. 4). Saturation correction methods (Zhang et al., 2013; Zhuo et al.,
2015; Hao et al., 2015) could further improve the quality of DMSP data
after applying the proposed method. By mitigating the blooming effect
in DMSP images by the proposed SEAM method, the corrected DMSP
images are expected to map the socioeconomic parameters and monitor
urbanization processes with improved performance (see an example in
the Supplementary Data). Note that blooming correction is not neces-
sary for other applications such as mapping light pollution. Due to its
simple principle, the SEAM method has the potential to produce
blooming-adjusted DMSP NTL images in large areas. The SEAM model
requires computational resources to select PLPs and build regression
models for each pixel. Processing the entire region of China
(5074×4001 pixels) required approximately 17 h using one CPU of a
quad-core desktop computer (3.3 GHz, Intel(R) Core(TM) i5-4590). The
computational efficiency can be further improved by parallel com-
puting and high-performance computers.
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