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A Modified Neighborhood Similar Pixel Interpolator
Approach for Removing Thick Clouds in

Landsat Images
Xiaolin Zhu, Feng Gao, Desheng Liu, and Jin Chen

Abstract—Thick-cloud contamination is a common problem in
Landsat images, which limits their utilities in various land surface
studies. This letter presents a new method for removing thick
clouds based on a modified neighborhood similar pixel interpola-
tor (NSPI) approach that was originally developed for filling gaps
due to the Landsat ETM+ Scan Line Corrector (SLC)-off problem.
The performance of the proposed method was evaluated with both
simulated and real cloudy images and compared with that of a
contextual multiple linear prediction (CMLP) method. The results
show that the modified NSPI approach can greatly reduce the
edge effects by CMLP. The reflectance restored by the modified
NSPI approach is more accurate than that by CMLP, especially
when the cloud-free auxiliary and cloudy images are acquired
from different seasons and have different spectral characteristics.

Index Terms—Cloud removal, image processing, image restora-
tion, Landsat.

I. INTRODUCTION

LANDSAT images provide the longest satellite observa-
tions of the Earth’s land surface that are crucial to a wide

range of remote sensing studies. However, due to the nature
of optical sensors and the relative long revisit cycle, Landsat
images are highly affected by thick-cloud contamination [1],
which presents a serious obstacle in their applications, espe-
cially in monitoring land surface dynamics. Therefore, remov-
ing thick clouds in Landsat images is necessary for improving
their quality and availability.
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In general, methods for removing thick clouds require cloud-
free images as auxiliary images to restore spectral information
blocked by clouds [2]–[5]. Helmer and Ruefenacht proposed
a strategy using regression trees and histogram matching for
producing cloud-free imagery [2]. Meng et al. developed a
closest spectral fit (CSF) method to replace spectral values of
cloudy pixels by cloud-free pixels using location-based one-to-
one correspondence and spectral-based closest fit [3]. Melgani
introduced a contextual multiple linear prediction (CMLP)
process for reconstructing spectral values of cloudy area in
Landsat Enhanced Thematic Mapper plus (ETM+) images, and
it was proved to be better than other existing methods [4]. The
CMLP approach was then improved by making use of spatial
and spectral correlations [5]. One limitation of these existing
methods is that the cloud-free image should be acquired at a
date as close as possible to the cloudy image to ensure similar
spectral characteristics [2], [3], which is often hard to meet in
practice. In addition, the spatial continuity of ground features
may not be preserved in the restored image with these methods
[2]–[5]. That is, the predicted values on the boundary of clouds
are somewhat different from the neighboring pixels outside the
clouds, resulting in a visual disruption between the clouds and
their neighborhood (referred to as edge effects).

Recently, a neighborhood similar pixel interpolator (NSPI)
approach was developed to fill gaps in Landsat ETM+ Scan
Line Corrector (SLC)-off images [6]. This approach can keep
the spatial continuity of filled images even using the auxiliary
image with a long time interval [6]. Similar idea could be
applied to remove thick clouds in Landsat images. However,
as spatial patterns of clouds are very different from those of
the SLC-off gaps, modifications to the NSPI approach are
needed for thick-cloud removal. In this letter, we introduce a
modified NSPI approach for removing thick clouds in Landsat
images. The performance of the approach is evaluated with both
simulated and real clouds in Landsat images.

II. METHODOLOGY

A. NSPI Approach

The NSPI approach uses a weighted linear model to predict
the spectral value of a target pixel (i.e., an unscanned pixel)
from its neighboring similar pixels [6]. The similar pixels have
similar spectral characteristics with the target pixel and are
assumed to have a similar change trend to the target pixel.
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Two initial predictions using the spectro-spatial and spectro-
temporal information can be calculated according to (1) and (2),
respectively

L1(x,y,t2,b)=

N∑
i=1

Wi×L(xi,yi,t2,b) (1)

L2(x,y,t2,b)=L(x,y,t1,b)

+

N∑
i=1

Wi(L(xi,yi,t2,b)−L(xi,yi,t1,b)) (2)

where L(xi, yi, t1, b) is the value of the ith similar pixel in band
b at date t1, L(xi, yi, t2, b) is with the same definition but at date
t2, L1(x, y, t2, b) is the prediction of the target pixel based on
the spectro-spatial information, L2(x, y, t2, b) is the prediction
based on the spectro-temporal information, N is the number of
similar pixels, and Wi is the weight of the ith similar pixel.

NSPI employs an adaptive moving window and a threshold to
identify the similar pixels. The weights Wi are calculated from
the product of a spatial distance (Di) and a spectral distance
(RMSDi), where Di is the Euclidean distance between the
ith similar pixel and the target pixel and RMSDi can be
calculated as

RMSDi =

√√√√√
K∑
b=1

(L(xi, yi, t1, b)− L(x, y, t1, b))
2

K
(3)

where K is the number of bands. Last, a weighted combination
of the two initial predictions is used to compute the final
prediction. The weights (T1 and T2) are determined by the
extent of the landscape homogeneity and the extent of spectral
change between input and target images within the moving
window [6]. Therefore, the final prediction can be obtained

L(x, y, t2, b) = T1 × L1(x, y, t2, b) + T2 × L2(x, y, t2, b).
(4)

B. Improvements for Cloud Removal

Following the idea of NSPI, it is reasonable to assume that
neighboring pixels around cloudy pixels have a similar change
trend of reflectance to cloudy pixels if their spectral charac-
teristics are similar. Thus, it is possible to employ an NSPI
approach to restore the spectral values of cloudy pixels using
the information of the neighboring similar pixels. However,
clouds are often randomly shaped clusters, mostly with a much
larger size than the narrow wedge-shaped SLC-off gaps. To
account for this difference of spatial pattern, modifications to
the NSPI approach are needed to make it appropriate for thick-
cloud removal.

Fig. 1 shows a flowchart of the modified NSPI approach. It
requires an auxiliary image acquired at date t1, which is cloud
free for the cloudy parts of the cloudy image acquired at date
t2. The detailed descriptions for the steps that are different from
the original NSPI approach are given as follows.

Fig. 1. Flowchart of the modified NSPI approach for thick-cloud removal.

Fig. 2. Schematic diagram of the similar pixel selection.

First, a cloud mask is required beforehand for this algorithm.
In general, thick clouds are brighter in visible bands and colder
in thermal bands than the land surface. These spectral charac-
teristics can be used to generate cloud masks [7]. In this letter,
we used the known cloud masks for simulated thick clouds and
visually interpreted cloud masks for real thick clouds, given that
cloud detection is not the focus of this letter.

Second, the adaptive window originally used to search sim-
ilar pixels for the SLC-off gap filling may not be appropriate
for removing thick clouds because a large window is needed
to cover large clouds. Accordingly, a modified procedure
was used to search for the spectrally similar pixels around
the clouds (Fig. 2). In detail, from the cloud-free image, N
spatially nearest pixels outside the clouds which satisfy the
spectral similarity criteria [6], [8] were selected as similar
pixels.

Third, in the gap-filling process, similar pixels are very close
to the gap pixels because gaps are very narrow, so the range
of spatial distances Di is comparable to the range of spectral
distances RMSDi. However, in the cloud-removal process,
the distance between a cloudy pixel and its similar pixels may
vary greatly, which could make the range of spatial distances
incomparable with that of spectral distances. Therefore, spatial
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distances (Di) and spectral distances (RMSDi) were both
normalized and rescaled as follows:

D∗
i =

Di −Dmin

Dmax −Dmin
+ 1 (5)

RMSD∗
i =

RMSDi −RMSDmin

RMSDmax −RMSDmin
+ 1 (6)

where the subscripts “min” and “max” represent the minimum
and maximum values, respectively; value 1 is an offset to define
the relative importance of the two distances. The two distance
measures were then combined to calculate the weights in (1)
and (2)

Wi = (1/ (D∗
i ×RMSD∗

i )) /

N∑
j=1

(
1/

(
D∗

j ×RMSD∗
j

))
.

(7)

Last, the weights (T1 and T2) used to combine the two initial
predictions in (4) may not be appropriate for cloud removal
because it is hard to assess the local spatial homogeneity and
the extent of change for a whole cloud patch whose size is
usually larger than the SLC-off gaps. Hence, the weights for the
two initial predictions were modified for thick-cloud removal.
Specifically, if the target pixel is near the cloud boundary, the
first prediction should be given a larger weight because it is
based on the spectro-spatial information from the same image
and can keep the spatial continuity better and reduce edge
effects. If the target pixel is located near the cloud center, the
second prediction based on the spectro-temporal information is
more reliable because the spectro-spatial information becomes
less useful around the cloud center where a target pixel is farther
to its similar pixels. Therefore, the weights combining the two
predictions can be determined by the relative spatial distances
from the target pixel to its similar pixels and to the cloud center.
The cloud center is computed by averaging the coordinates of
all cloudy pixels (e.g., the circle in Fig. 2). Finally, the value of
the target pixel can be predicted as

L(x, y, t2, b)=(L1(x, y, t2, b)/r1

+ L2(x, y, t2, b)/r2) /(1/r1 + 1/r2) (8)

where r1 represents the average spatial distance between the
target pixel and its similar pixels and r2 represents the spatial
distance between the target pixel and the cloud center.

III. ALGORITHM TESTS

A. Experimental Design

We tested the modified NSPI approach using simulated and
real cloudy images. Three Landsat 7 ETM+ images acquired
on January 25, July 4, and August 5 of 2002 in central
Virginia (37◦ N, 77◦ W) were obtained from the USGS and
atmospherically corrected using the Landsat Ecosystem Dis-
turbance Adaptive Processing System [9]. All three images

Fig. 3. NIR–red–green composites of Landsat ETM+ images acquired on
July 4, 2002. (a) Heterogeneous subset. (c) Homogeneous subset. Figures
(b) and (d) are the simulated cloudy images based on (a) and (c), respectively.
The white area represents a simulated thick-cloud patch.

TABLE I
SUMMARY OF CLOUD SIZE (IN PIXELS) OF 100 SIMULATED

CLOUDY IMAGES FOR EACH SUBSET

were then coregistered and orthorectified using the Automated
Registration and Orthorectification Package [10]. Two subset
scenes (500 × 500 pixels) that correspond to a heterogeneous
landscape [Fig. 3(a)] and a homogeneous landscape [Fig. 3(c)]
were extracted from the Landsat images for simulation analysis.

A Monte Carlo experiment was carried out to test the new
method. For each subset image, 100 cloudy images were sim-
ulated based on the July 4 image. Specifically, to generate
one cloudy image, a cloud patch with a random size (i.e., the
number of pixels) was simulated at a random location on the
July 4 image. The size of the simulated clouds varies according
to a power law distribution [11]. In addition, given that the
modified NSPI approach will use neighborhood information of
clouds, the simulated clouds were rejected if they were located
at the edge of the subset images. Fig. 3(b) and (d) shows an
example of the simulated cloudy image for each subset. Table I
summarizes the statistics of the simulated cloud size. For each
subset, the images on January 25 and August 5 were used as the
auxiliary images to remove the simulated clouds, respectively,
which allowed us to evaluate the effect of temporal interval
between the auxiliary image and the cloudy image.

Considering that real thick clouds are more complex than
the simulated ones, a real cloudy Landsat 5 TM image
(15 km × 15 km area in Ohio) acquired on July 24, 2008
[Fig. 4(a)], was also used to evaluate the modified NSPI
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Fig. 4. (a) Landsat 5 TM image used in the real cloud-removal test. (b) Re-
stored image from the CMLP approach. (c) Restored image from the modified
NSPI approach.

method. Here, a cloud-free image acquired on June 6, 2008,
was selected as an auxiliary image for thick-cloud removal.

For the purpose of comparison, CMLP was also applied to
both simulated and real cloudy images to provide a benchmark
to assess the strengths and limitations of the modified NSPI
method, because CMLP was shown to be better than other
cloud-removal methods [4]. Since both methods were applied
to restore the same simulated cloudy images, the results of the
two methods were not independent. Therefore, a paired Student
t-test was used to determine if the difference between the two
methods is statistically significant.

B. Results of Simulated Clouds

The minimum number of similar pixels (N ) is the only pa-
rameter to be set in the modified NSPI method. A trial-and-error
procedure was used to calibrate parameter N in this letter. Our
results revealed that the reflectance prediction is more accurate
when using a larger N , but prediction accuracy becomes stable
when N reaches 20. For computational efficiency, N was set to
be 20 in the algorithm tests.

Fig. 5 shows the cloud-removal results from the simulated
cloudy images by using the cloud-free image on January 25. It
is visually clear that the image restored by the modified NSPI
approach has less edge effects [see Fig. 5 (c) and (f)] and is
more similar to the actual image than the result from the CMLP
approach. Table II lists RMSE values of the restored images
for each subset and reports p-values of the paired Student t-
test between the two methods. Generally, the performance of
the modified NSPI approach is better than that of the CMLP
approach with smaller RMSE values. The difference between
the two approaches is statistically significant (p < 0.05) in
all the cases. Moreover, there is a positive correlation (n =
12, R2 = 0.899, and p < 0.001) between the improvement
in accuracy (i.e., the difference of mean RMSE between the
modified NSPI and CMLP) and the spectral difference between
the auxiliary image and the cloudy image (Diff in Table II),
suggesting that the modified NSPI approach performs much
better than the CMLP approach when using a temporally farther
auxiliary image. This is very important for thick-cloud removal
because it is often difficult to find an auxiliary image that is
temporally close to the cloudy image.

C. Results of Real Cloudy Image

Fig. 4(b) and (c) shows the cloud-removal results of the real
cloudy image from the CMLP and modified NSPI approaches,

Fig. 5. Restored images for the simulated clouds in Fig. 3 by using the image
on January 25. (a) and (b) By the CMLP approach. (d) and (e) By the modified
NSPI approach. (c) and (f) Zoomed images of the area marked in (b) and (e),
respectively.

TABLE II
MEAN AND STANDARD DEVIATION (SD) OF RMSE VALUES BY CMLP
AND THE MODIFIED NSPI METHOD FOR SUBSET 1 (HETEROGENEOUS)

AND SUBSET 2 (HOMOGENEOUS) FROM THE

MONTE CARLO EXPERIMENT

respectively. Both methods can recover most of the image
features blocked by thick clouds and shadows. However, the
image restored by CMLP shows obvious edge effects, whereas
they are nearly invisible in the restored image by the modified
NSPI approach.

IV. CONCLUSION AND DISCUSSION

In this letter, we have developed a modified NSPI approach
for removing thick-cloud contamination on Landsat imagery.
Compared with CMLP, the proposed method can restore an
image with less edge effects. More importantly, the reflectance
values estimated by the modified NSPI approach are more accu-
rate than the results from CMLP when the cloud-free auxiliary
image and the cloudy image are acquired from different seasons
and have different spectral characteristics.

The improved performance of the new method can be as-
cribed to three aspects. First, similar pixels are used to provide
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change information between the cloud-free image and the
cloudy image, which can effectively account for the radiometric
difference between two images. That is the reason why the
modified NSPI approach is more effective when time interval
between the auxiliary and the cloudy image is longer. This
approach can also be applied to images at the digital number
level over flat terrains, because the difference of illumination
between two images can be taken into account by the change
term in (2). For mountainous areas, topographic correction is
needed before the cloud removal [12]. Second, the modified
NSPI approach makes use of the spectral information in a
sufficient number of similar pixels, which can guarantee its reli-
ability from a statistical viewpoint. In contrast, the CSF method
only uses the spectral-closest cloud-free pixel, and the CMLP
method just utilizes the corresponding pixel from the cloud-free
images as input of the contextual regression model to predict the
value of cloudy pixel. Third, the weighted combination of two
predictions ensures the spatial and radiometric continuity of the
restored image according to the relative usefulness of spectro-
spatial and spectro-temporal information.

There are some limitations about the modified NSPI ap-
proach. First, similar to CMLP [4], the accuracy of the re-
covered image slightly decreases with the increased cloud
size. This may be because both methods use neighborhood
information of clouds. As the cloud size increases, the average
distance between a target pixel and its similar pixels increases
and their correlation decreases, resulting in reduced prediction
accuracy. Second, for regions with frequent presence of clouds,
it is hard to obtain cloud-free auxiliary images from the same
Landsat sensor. A recent study has shown the potential to
build consistent time-series data from multiple Landsat-like
resolution sensors using a reference-based approach [13]. The
approach can provide an additional auxiliary clear image to
choose from. We will explore the use of images from different
sensors to remove cloud contamination in the future.
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