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Due to technical and budget limitations, remote sensing instruments trade spatial resolution and swath
width. As a result not one sensor provides both high spatial resolution and high temporal resolution.
However, the ability to monitor seasonal landscape changes at fine resolution is urgently needed for global
change science. One approach is to “blend” the radiometry from daily, global data (e.g. MODIS, MERIS, SPOT-
Vegetation) with data from high-resolution sensors with less frequent coverage (e.g. Landsat, CBERS,
ResourceSat). Unfortunately, existing algorithms for blending multi-source data have some shortcomings,
particularly in accurately predicting the surface reflectance of heterogeneous landscapes. This study has
developed an enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) based on the
existing STARFM algorithm, and has tested it with both simulated and actual satellite data. Results show that
ESTARFM improves the accuracy of predicted fine-resolution reflectance, especially for heterogeneous
landscapes, and preserves spatial details. Taking the NIR band as an example, for homogeneous regions the
prediction of the ESTARFM is slightly better than the STARFM (average absolute difference [AAD] 0.0106 vs.
0.0129 reflectance units). But for a complex, heterogeneous landscape, the prediction accuracy of ESTARFM is
improved even more compared with STARFM (AAD 0.0135 vs. 0.0194). This improved fusion algorithm will
support new investigations into how global landscapes are changing across both seasonal and interannual
timescales.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Due to technical and budget limitations, remote sensing instru-
ments trade spatial resolution and swath width. As a result it is
difficult to acquire remotely sensed data with both high spatial
resolution and frequent coverage (Price, 1994). For example, remotely
sensed images acquired from Landsat series satellites, SPOT, and IRS
with a spatial resolution from 6 to 30 m are usually the primary data
source for land use/cover mapping and change detection (Woodcock
& Ozdogan, 2004), monitoring ecosystem dynamics (Healey et al.,
2005; Masek & Collatz, 2006; Masek et al., 2008), as well as
biogeochemical parameter estimation (Cohen & Goward, 2004).
However, the long revisit cycles of these satellites (Landsat/TM: 16-
day; SPOT/HRV: 26-day; IRS: 24-day), frequent cloud contamination,
and other poor atmospheric conditions (Asner, 2001; Jorgensen,
2000; Ju & Roy, 2008) have limited their use in detecting rapid surface
changes associated with intraseasonal ecosystem variations (distur-
bance and phenology) and natural disasters (Gonzalez-Sanpedro
et al., 2008; Ranson et al., 2003). On the other hand, the Moderate

Resolution Imaging Spectroradiometer (MODIS) on the Terra/Aqua,
SPOT-Vegetation (SPOT-VGT), and NOAA Advanced Very High
Resolution Radiometer (AVHRR) can provide high frequent (daily)
observations, but with coarse spatial resolutions ranging from 250 m
to 1000 m. This resolution is not sufficient for monitoring land cover
and ecosystem changes within heterogeneous landscapes (Shabanov
et al., 2003). Thus, combining remotely sensed data from different
sensors is a feasible and less expensive way to enhance the capability
of remote sensing for monitoring land surface dynamics (Camps-Valls
et al., 2008; Gao et al., 2006; Marfai et al., 2008).
Traditional image fusion methods such as the intensity–hue–

saturation (IHS) transformation (Carper et al., 1990), principal
component substitution (PCS) (Shettigara, 1992), and wavelet
decomposition (Yocky, 1996) focus on producing new multispectral
images that combine high-resolution panchromatic data with
multispectral observations acquired simultaneously at coarser reso-
lution (Pohl & van Genderen, 1998; Zhang, 2004). They are useful for
exploiting different spectral and spatial characteristics of multi-sensor
data. However, they are not effective in enhancing spatial resolution
and temporal coverage simultaneously because the panchromatic
band is only helpful for enhancing the spatial resolution (up to a
certain extent). However, enhancing spatial resolution and temporal
coverage simultaneously is necessary for studying inter- and intra-
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annual vegetation dynamics. To simulate reflectance data with both
high spatial resolution and frequent coverage, Gao et al. (2006)
developed a spatial and temporal adaptive reflectance fusion model
(STARFM) to blend Landsat and MODIS data for predicting daily
surface reflectance at Landsat spatial resolution and MODIS temporal
frequency. Testing using both simulated and actual data demonstrat-
ed the effectiveness of the STARFM for accurately predicting daily
surface reflectance. Another downscaling algorithm was recently
developed based on a linear mixing model to produce Landsat-like
images having the spectral and temporal resolution provided by the
Medium Resolution Imaging Spectrometer (MERIS) (Zurita-Milla
et al., 2009). Nevertheless, this downscaling algorithm requires a
high-resolution land use database for pixel unmixing, which may not
be available for many applications. Compared with the downscaling
algorithm, the STARFM method does not need any ancillary data. It
also has been demonstrated and validated in a conifer-dominated
area in central British Columbia, Canada, for which it produced daily
surface reflectance at Landsat spatial resolution and in good
agreement with actual Landsat data (Hilker et al., 2009b).
Although recent results of the STARFM method suggest new

opportunities for producing remotely sensed data with both high
spatial resolution and frequent coverage (Gao et al., 2006; Hilker et al.,
2009a,b), it should be noted that the original STARFMmethod also has
three limitations that need to be rectified before widespread
application. First, the STARFM method cannot predict disturbance
events if the changes caused by disturbance are transient and not
recorded in at least one of the base Landsat images (Hilker et al.,
2009a). Aiming to solve this limitation, a new fusion algorithm called
as Spatial Temporal Adaptive Algorithm for mapping Reflectance
Change (STAARCH) has been developed for the vegetated land surface
based on the STARFM method (Hilker et al., 2009a). The STAARCH
algorithm determines spatial changes from Landsat and temporal
changes from MODIS, which allows the algorithm to choose an
optimal Landsat base date and thus improve the accuracy of the
synthetic Landsat images. Secondly, the STARFM method does not
explicitly handle the directional dependence of reflectance as a
function of the sun–target–sensor geometry described by the Bi-
directional Reflectance Distribution Function (BRDF) (Roy et al.,
2008). A semi-physical fusion approach was developed to solve this
limitation, which uses the MODIS BRDF/Albedo land surface product
and Landsat ETM+ data to predict ETM+ reflectance on the same, an
antecedent, or subsequent date (Roy et al., 2008). Last, the quality of
the predicted Landsat-like image depends on the geographic region of
interest. The STARFM relies on temporal information from pure,
homogeneous patches of land cover at the MODIS pixel scale. These
“pure” pixels are identified by the homogeneity of Landsat pixels
within the MODIS cell boundary. Simulations and predictions based
on the actual Landsat and MODIS images show that STARFM can
predict reflectance accurately if these coarse-resolution homogeneous
pixels exist (Gao et al., 2006). However, prediction results degrade
somewhat when used on heterogeneous fine-grained landscapes,
including small-scale agriculture (Gao et al., 2006; Hilker et al.,
2009b). The STAARCH algorithm (Hilker et al., 2009a) only chooses
the optimal Landsat acquisitions for STARFM, so it has the same
problem as STARFM for heterogeneous regions. The assumption of the
semi-physical fusion approach (Roy et al., 2008) that the MODIS
modulation term c is representative of the reflectance variation at
Landsat ETM+ scale does not hold when reflectance change occurs in
a spatially heterogeneous manner at scales larger than the 30 m
Landsat pixels and smaller than the 500 m MODIS pixels (Roy et al.,
2008). Thus it too has the same difficulty in predicting the reflectance
of heterogeneous landscapes as the original STARFM method.
To solve the last limitation of the STARFM method, the accurate

prediction of surface reflectance in heterogeneous landscapes, we
developed an enhanced STARFM method (ESTARFM). The ESTARFM
improves on the original STARFM algorithm by using the observed

reflectance trend between two points in time, and spectral unmixing
theory, in order to better predict reflectance in changing, heteroge-
neous landscapes. The approach was validated by employing a small
number of pairs (two or more) of fine spatial (e.g. Landsat) and coarse
spatial resolution images (e.g. MODIS) acquired on the same day and a
series of coarse spatial resolution images (e.g. MODIS) acquired on the
desired prediction dates. In this paper, the theoretical basis of the
ESTARFM method is first presented, and then results from the
ESTARFM method based on simulated data and actual Landsat/
MODIS images are given and compared to the original STARFM
method.

2. Theoretical basis of the ESTARFM method

For a given region, we assume that remotely sensed data from
different satellite sensors acquired at the same date are comparable
and correlated with each other after radiometric calibration, geomet-
ric rectification, and atmospheric correction. However, due to
differences in sensor systems such as orbit parameters, bandwidth,
acquisition time and spectral response function, there may be
systematic biases in surface reflectance among different sensor
images. The main idea of the ESTARFM is to make use of the
correlation to blend multi-source data and meanwhile to minimize
the system biases. According to the heterogeneity of land surfaces,
pure pixels and mixed pixels are discussed below respectively.
Moreover, for convenience in the discussion, we will call the image
with low spatial resolution but frequent coverage as the “coarse-
resolution” image, while the image with high spatial resolution but
infrequent coverage will be identified as the “fine-resolution” image.
We also suppose that the coarse-resolution sensor has similar spectral
bands (e.g. band B) as the fine-resolution sensor.

2.1. Pure coarse-resolution pixel

Assume that the coarse-resolution reflectance image has been
resampled to the same spatial resolution, size and extent of the fine-
resolution image. For a pure, homogeneous coarse-resolution pixel
which is covered by only one land type, the difference of reflectance
between the resampled coarse-resolution pixel and fine-resolution
pixel only results from the systematic biases mentioned above.
Therefore, the relationship between the coarse-resolution reflectance
and fine-resolution reflectance can be reasonably described by a linear
model expressed as:

Fðx; y; tk;BÞ = a × Cðx; y; tk;BÞ + b ð1Þ

where F, C denote the fine-resolution reflectance and coarse-
resolution reflectance respectively, (x, y) is a given pixel location for
both fine-resolution and coarse-resolution images, tk is the acquisition
date, a and b are coefficients of the linear regressionmodel for relative
calibration between coarse and fine-resolution reflectance. For the
pure coarse-resolution pixels, Eq. (1) should be stable considering the
stability of sensors for extended periods. Considering differences of
atmospheric condition, solar angle and altitude at different locations,
and that radiometric calibration, geometric rectification and atmo-
spheric correction cannot completely remove this variability, the
coefficients a and b might change with location. Therefore, the
coefficients a and b should be derived locally rather than using global
coefficients.
Suppose we have a fine-resolution image and coarse-resolution

image acquired at t0 and another coarse-resolution image acquired at
tp. If the land cover type and sensor calibration do not change between
t0 and tp, Eq. (1) can be written as Eq. (2) at t0 and Eq. (3) at tp:

Fðx; y; t0;BÞ = a × Cðx; y; t0;BÞ + b ð2Þ
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Fðx; y; tp;BÞ = a × Cðx; y; tp;BÞ + b: ð3Þ

From Eqs. (2) and (3), we can obtain:

Fðx; y; tp;BÞ = Fðx; y; t0;BÞ + a × ðCðx; y; tp;BÞ−Cðx; y; t0;BÞÞ: ð4Þ

Eq. (4) shows that the fine-resolution reflectance at tp equals the
sum of the fine-resolution reflectance at t0 and the scaled change of
reflectance from t0 to tp given by coarse-resolution images from
different dates. Because F(x, y, t0, B), C(x, y, t0, B), C(x, y, tP, B) all are
known, accordingly, we can calculate the fine-resolution reflectance
F(x, y, tp, B) at tp when the coefficient a is known, even if there is no
actual fine-resolution data. Here the conversion coefficient a is
determined by the system biases between the sensors which can be
considered stable for each pixel, if the acquisition time is close and
thus atmospheric conditions are almost identical (or negligible
after correction). If we can acquire two pairs of fine-resolution and
coarse-resolution images at times tm and tn, we can obtain the
coefficient a by linear regression of the fine-resolution reflectance
against the coarse-resolution reflectance at tm and tn, and then
calculate the fine-resolution reflectance at prediction time tp. It is
noted that the assumption of stable conversion coefficient a is
strictly true only over non-changing surfaces such as deserts or
water bodies after geometric rectification and atmospheric correc-
tion are performed. Except for these cases, the coefficient a may
slightly change with time and could introduce some error in the
Eq. (4) calculation.

2.2. Mixed (heterogeneous) coarse-resolution pixel

Due to the complexity of the land surface, most of the pixels in
coarse-resolution images are mixed pixels (i.e. covered by multiple
land cover types). In this case, the relationship between the coarse-
resolution reflectance and fine-resolution reflectance may not exist
as described in Eq. (4). Supposing that the reflectance of a mixed
pixel can be modeled as a linear combination of the reflectance of
the different land cover components present in that pixel weighted
by their fractional area coverage (Adams et al., 1985), the changes
in reflectance of a mixed pixel between two dates represent the
weighted sum of changes in reflectance for each land cover type
within the pixel. Assuming that the proportions of land cover types
contained in the mixed coarse-resolution pixel are not changed
from date tm to tn, the reflectance of a mixed coarse-resolution
pixel can be described as following according to linear mixture
model:

Cm =∑
M

i=1
fi
1
a
Fim−

b
a

� �
+ε

Cn =∑
M

i=1
fi
1
a
Fin−

b
a

� �
+ε

ð5Þ

where Cm, Cn are reflectance of mixing coarse-resolution pixel at date
tm and tn respectively, fi is fraction of ith land type (ith endmember),
Fim and Fin are reflectance of ith endmember at date tm and tn obtained
in fine-resolution image respectively, M is the total number of
endmembers, and ε is the residual error, a, b are the coefficients of
relative calibration between coarse and fine-resolution reflectance as
described in Section 2.1. All of the fine-resolution pixels contained
within the mixed coarse-resolution pixels can be regarded as
endmembers of the coarse-resolution pixel, so Fim and Fin are the
reflectance of fine-resolution pixels of different land types. However,
owing to the bias between the fine- and coarse-resolution reflectance
described in Section 2.1, Fim and Fin must be calibrated to be the
endmember reflectance of coarse-resolution mixing pixel. From

Eq. (5), we can get the changes of coarse-resolution reflectance
from tm to tn:

Cn−Cm = ∑
M

i=1

fi
a

Fin−Fimð Þ: ð6Þ

We also suppose the change of reflectance of each endmember is
linear from tm to tn, then the reflectance of ith endmember at tn can be
described by the reflectance at tm:

Fin = hi × Δt + Fim ð7Þ

where Δt= tn− tm, and hi is the change rate and can be thought as
stable during a period. The assumption that the reflectance linearly
changes from tm to tn is reasonable during a short time period.
Admittedly, the reflectance change might not be linear in some
situations, such as phenological change of vegetation. In such cases,
linear approximation is a tradeoff choice because the accurate
nonlinear model is unknown, although this approximation could
add some error. Then Eq. (6) can be rewritten as:

Cn−Cm = Δt∑
M

i=1

fihi
a

: ð8Þ

If the reflectance of kth endmember at date tm and tn is known, the
Δt can also be represented from Eq. (7) as:

Δt =
Fkn−Fkm

hk
ð9Þ

where hk is the change rate of kth endmember reflectance. Taking
Eq. (9) into Eq. (8), it can be rewritten as:

Fkn−Fkm
Cn−Cm

=
hk

∑
M

i=1

fihi
a

= νk: ð10Þ

The right part of Eq. (10) is a constant given our prior assumptions
that the proportion of each endmember and the reflectance change
rate of each endmember are stable. Thus vi indicates the ratio of the
change of reflectance for kth endmember to the change of reflectance
for a mixed coarse-resolution pixel. For consistency with the pure
coarse-resolution pixel, we also call vi a conversion coefficient below.
From Eq. (10), we can find that there is a linear relationship for
reflectance change between the endmember and mixed coarse-
resolution pixel. When the endmember is taken as fine-resolution
pixels (x, y) within a mixed coarse-resolution pixel, we can obtain the
conversion coefficient v(x, y) by linearly regressing the reflectance
changes of fine-resolution pixels of the same endmember and coarse-
resolution pixel.
Similarly, if one pair of fine-resolution and coarse-resolution

images at t0 and another coarse-resolution image at tp has been
acquired, the unknown reflectance of fine-resolution pixel at tp can be
predicted according to Eq. (11):

Fðx; y; tp;BÞ = Fðx; y; t0;BÞ + vðx; yÞ × ðCðx; y; tp;BÞ−Cðx; y; t0;BÞÞ: ð11Þ

Although Eqs. (4) and (11) have the same form, their meanings are
different. Eq. (4) represents the relative normalization of pure pixels
between different resolution images and it is reasonable for each date,
so the prediction of reflectance of fine-resolution pixel is more
accurate, while Eq. (11) describes the relationship of reflectance
change between an endmember (fine-resolution pixel) and mixed
coarse-resolution pixel according to a series of assumptions. It is a
reasonable assumption during a relatively short period in which the
proportion of each endmember and the change rate of reflectance of
each endmember are stable. Note that Eq. (4) is a special case of
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Eq. (11) when the coarse-resolution pixel is dominated by just one
endmember.
It is obvious that Eqs. (4) and (11) only use information from a

single pixel to predict fine-resolution reflectance. Considering
neighboring same-class pixels with similar reflectance changes, a
moving windowmethod described by Gao et al. (2006) is used to take
full advantage of the information from neighboring pixels. Here the
moving window is used to search similar pixels within the window
and information of similar pixels is then integrated into fine-
resolution reflectance calculation as described in Eq. (12). In detail,
assuming w is the search window size, the fine-resolution reflectance
of the central pixel (xw / 2, yw / 2) at date tp can be calculated as follows
according to Eq. (4) or Eq. (11):

Fðxw=2; yw=2; tp;BÞ = Fðxw=2; yw =2; t0;BÞ + ∑
N

i=1
Wi × Vi × ðCðxi; yi; tp;BÞ−Cðxi; yi; t0;BÞÞ

ð12Þ

where N is the number of similar pixels including the central
“prediction” pixel, (xi, yi) is the location of ith similar pixel, and Wi

is the weight of ith similar pixel. Here, neighboring pixels with the
same land cover type as the central pixel are called “similar” pixels.
Thus they have spectral characteristics similar to the central pixel
obtained from the fine-resolution image. Because we can predict the
fine-resolution reflectance more accurately from a pure coarse-
resolution pixel according to the above theoretical discussion, pure
coarse-resolution pixels should be given larger weight value. Vi is the
conversion coefficient of ith similar pixel. The search window sizew is
determined by the homogeneity of surface. If the regional landscape is
more homogeneous, then w can be smaller. Eq. (12) means that the
fine-resolution reflectance of prediction date equals the fine-resolu-
tion reflectance observed at one time (base date) added to the
reflectance changes that are predicted from all similar pixels within
the window in the resampled coarse-resolution image.

3. Process of ESTARFM implementation

Fig. 1 presents a flowchart of the ESTARFM. This algorithm requires
at least two pairs of fine- and coarse-resolution images acquired at the
same date and a set of coarse-resolution images for desired prediction
dates. Before implementing the ESTARFM, all the images must be
preprocessed to georegistered surface reflectance. There are four
major steps in the ESTARFM algorithm implementation. First, two
fine-resolution images are used to search for pixels similar to the
central pixel in a local window. Second, the weights of all similar
pixels (Wi) are calculated. Third, the conversion coefficients Vi are
determined by linear regression. Finally, Wi and Vi are used to
calculate the fine-resolution reflectance from the coarse-resolution
image at the desired prediction date. All of the steps will be discussed
in detail below.

3.1. Data preprocessing

Both coarse-resolution and fine-resolution images need to be
preprocessed geometrically and radiometrically before using in the
ESTARFM. For this study, Landsat ETM+ data were co-registered and
orthorectified using the automated registration and orthorectification
package (AROP) (Gao et al., 2009). Digital numbers from Landsat level
1 product were calibrated and atmospherically corrected using
Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) (Masek et al., 2006). MODIS daily surface reflectance
(MOD09GA) data were reprojected and resampled to the Landsat
resolution and extent using MODIS Reprojection Tools (MRT). As
LEDAPS uses similar atmospheric correction approach (6S approach)
to the MODIS surface reflectance product, reflectance from two
sensors was found consistent and comparable (Masek et al., 2006).

3.2. Selection of similar neighbor pixels

The pixels within thewindowwith the same land cover type as the
central pixel (“similar” pixels) provide specific temporal and spatial
information to compute the fine-resolution reflectance for the central
pixel. There are mainly two methods to search for similar pixels: (1)
an unsupervised clustering algorithm is applied to the fine-resolution
image and neighboring pixels belonging to the same cluster as the
central pixel are identified; (2) the reflectance difference is computed
between neighboring pixels and the central pixel in the fine-
resolution image, and thresholds are used to identify similar pixels.
The thresholds can be determined by the standard deviation of a
population of pixels from the fine-resolution image and the estimated
number of land cover classes of the image (Gao et al., 2006). If all the
bands for the ith neighbor pixel satisfy Eq. (13), the ith neighbor pixel
is selected as a similar pixel:

jFðxi; yi; tk;BÞ−Fðxw=2; yw=2; tk;BÞj≤σðBÞ × 2 =m ð13Þ

where σ(B) is the standard deviation of reflectance for band B,m is the
estimated number of classes. Using a larger number of classes
represents a stricter condition for selection similar pixels from fine-
resolution images. Both approaches select pixels within the window
with similar spectral characteristics as the central pixel. However, the
clustering method applies the same clustering rules over the whole
image and any misclassification has an adverse impact on all pixels in
the image. On the contrary, the threshold method is applied within a
local window. Even if individual pixels are incorrectly identified as
spectrally “similar”, the impact of the misclassification is restricted to
the region within the local window. Therefore, we employed the
threshold method to select similar pixels within the search window.
It is notable that the reflectance of some land cover types may

change significantly from date 1 to date 2, resulting in some
uncertainty in selecting the similar pixels if we only use one image
date. For example, theremay be bare soil and crop vegetation pixels in
a search window with the central pixel covered by crop. If we use the
image acquired when the crop has not greened up, the selected
similar pixels may be bare soil because the spectral characteristics of
cropland matches bare soil at that time. On the other hand, if we use

Fig. 1. The flowchart of the ESTARFM algorithm.
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the image acquiredwhen the crop has grown for a period, the selected
similar pixels are likely green crops. Accordingly, in contrast to the
original STARFM, we used the fine-resolution images acquired at tm
and tn to select the similar pixels, respectively, and then extract the
intersection of the two results to obtain a more accurate set of similar
pixels. It is true that in some cases a central pixel may have no
spectrally similar pixels within the search window However, even in
the extreme case that no similar pixels exist except for the central
pixel itself, the weight of the central pixel is set to 1.0 and the
conversion coefficient can be computed according to the algorithm.

3.3. Calculation of weight for similar pixels

The weight Wi decides the contribution of ith similar pixel to
predicting reflectance change at the central pixel. It is determined by
the location of the similar pixel and the spectral similarity between
the fine- and coarse-resolution pixel. Higher similarity and smaller
distance of the similar pixel to the central pixel produce a higher
weight (i.e. greater contribution) for the similar pixel. Here, spectral
similarity is determined by correlation coefficient between each
similar pixel and its corresponding coarse-resolution pixel as Eq. (14).

Ri =
E ðFi−EðFiÞÞðCi−EðCiÞÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffi

DðFiÞ
p ⋅ ffiffiffiffiffiffiffiffiffiffiffiffiffi

DðCiÞ
p ð14Þ

Fi = Fðxi; yi; tm;B1Þ;…; Fðxi; yi; tm;BnÞ; Fðxi; yi; tn;B1Þ; ⋯; Fðxi; yi; tn;BnÞf g

Ci = Cðxi; yi; tm;B1Þ; ⋯;Cðxi; yi; tm;BnÞ;Cðxi; yi; tn;B1Þ; ⋯;Cðxi; yi; tn;BnÞf g

where Ri is the spectral correlation coefficient between fine- and
coarse-resolution pixel for ith similar pixel, Fi, Ci is the spectral vector
containing the reflectance of each band at tm and tn for ith fine-
resolution similar pixel and its corresponding coarse-resolution pixel,
E(·) is the expected value, and D(Fi), D(Ci) is the variance of Fi and Ci

respectively. The value of R varies from−1 to 1, and a larger R denotes
a higher spectral similarity. The reason for combining the spectra of
two different dates to compute the spectral similarity is that the
spectral characteristics of some land cover types change through
time; combining more spectral information from different times can
provide a more accurate measure of similarity between the fine- and
coarse-resolution pixel.
The geographic distance di between the ith similar pixel and

central pixel can be calculated according to Eq. (15).

di = 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxw=2−xiÞ2 + ðyw=2−yiÞ2

q
= ðw = 2Þ ð15Þ

where w is the width of searching window that is used to normalize
the distance, ensuring that the distance range for similar pixels in
different search windows extends from 1 to 1+20.5.
Combining spectral similarity and distance, a synthetic indexD can

be computed that combines spectral and geographic distance as:

Di = ð1−RiÞ × di: ð16Þ

As described above, a similar pixel with a larger D value should
contribute less to computing the reflectance change for the central
pixel, so we have used the normalized reciprocal of D as the weight
Wi:

Wi = ð1 =DiÞ= ∑
N

i=1
ð1 =DiÞ: ð17Þ

The range of Wi is from 0 to 1, and the total weight of all similar
pixels is 1. For a special situation, when there are P similar pixels
among all similar pixels whose corresponding coarse-resolution
pixels are pure (R=1), we defined the weight for these similar pixels

is 1/P and the weights of the rest of the similar pixels are 0, that is, all
the change information is given by the pure coarse-resolution pixels
with equal weight.

3.4. Calculation of conversion coefficient

It is desirable to calculate the conversion coefficient Vi by linear
regression analysis for each similar pixel in a search window.
Theoretically, for each similar pixel (xi, yi), its conversion coefficient
can be computed from the fine- and coarse-resolution reflectance at
the base time (tm and tn). However, since the preprocessing cannot
remove all the contamination of the images and it is very hard tomake
the geometrical position of fine- and coarse-resolution images
coincide accurately, only using each similar pixel to compute the
conversion coefficient might cause a large uncertainty. Therefore, we
take full advantage of the information from neighboring similar pixels
to compute the conversion coefficient. Reflecting the fact that the
spectral characteristics of the similar pixels within the same coarse
pixel are more consistent with each other, it follows that they should
have the same conversion coefficient. Consequently, we apply linear
regression model to the fine- and coarse-resolution reflectance of the
similar pixels within the same coarse pixel to obtain the conversion
coefficients either for the pure coarse-resolution pixel or for the
mixed coarse-resolution pixel. As Fig. 2 shows, the search window
covers 4 intact and 8 partial coarse-resolution pixels. For similar pixels
located in the intact coarse-resolution pixel, their conversion
coefficients can be obtained from the regression of the fine-resolution
reflectance against the coarse-resolution reflectance of these similar
pixels. For the similar pixels located in the partial coarse-resolution
pixel, the number of similar pixels sometimes is too few to build a
reliable regression model. As Fig. 2 shows, there are only three similar

Fig. 2. Schematic diagram of the similar pixels within a same coarse-resolution pixel.
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pixels (marked in black) in the upper-right partial coarse-resolution
pixel. Therefore, according to the assumption that the similar pixels
within the same coarse pixel have the same conversion coefficient, all
the similar pixels in this partial coarse-resolution pixel are also
selected additionally (marked in red color in Fig. 2). All the similar
pixels within this partial coarse-resolution pixel are used to calculate
conversion coefficient by regression analysis. It should be noted that
that these new similar pixels outside the search window (the pixels
marked in red color in Fig. 2) are only used to compute the conversion
coefficient V, but are not used to predict the reflectance in the
following step because they are outside the search window.
As an example of the linear regression analysis (Fig. 3), there are

34 similar pixels within a coarse-resolution pixel, and the two dashed
rectangles label the reflectance of these pixels at tm and tn
respectively. From these points in Fig. 3, a linear regression model
can be built (R2=0.925, Pb0.001) and its slope corresponds to
conversion coefficient V for all similar pixels within the coarse-
resolution pixel (V=1.115).
As a special case, if the linear regression model with statistical

significance cannot be built, V has to be set as 1 even if it introduces
some errors.

3.5. Calculation of reflectance of the central pixel

After the weight and conversion coefficient has been calculated
according to Eq. (12), the fine-resolution reflectance at tp can be
predicted based on the fine-resolution reflectance at the base date and
the resampled coarse-resolution reflectance observed at tp. Also
according to Eq. (12), either the fine-resolution reflectance at tm or tn
can be used as the reflectance at base date to compute the fine-
resolution reflectance of prediction date tp, and the results are marked
as Fm (xw / 2, yw / 2, tp, B) and Fn (xw / 2, yw / 2, tp, B) respectively. A more
accurate reflectance at tp can be obtained by a weighted combination
of the two prediction results. Fine-resolution samples closer in date to
the prediction date should show closer reflectance values, so it is
reasonable to set a larger temporal weight to the fine-resolution
reflectance input in this case. Thus the temporal weight can be
calculated according to the change magnitude detected by resampled
coarse-resolution reflectance between the time tk (k=m or n) and the
prediction time tp:

Tk =
1=j∑w

j=1
∑
w

l=1
Cðxj; yl; tk;BÞ−∑

w

i=1
∑
w

l=1
Cðxj; yl; tp;BÞj

∑
k=m;n

ð1 =j∑w
j=1
∑
w

l=1
Cðxj; yl; tk;BÞ−∑

w

i=1
∑
w

l=1
Cðxj; yl; tp;BÞj; ðk = m;nÞ:

ð18Þ

Then the final predicted fine-resolution reflectance at the
prediction time tp is calculated as:

Fðxw=2; yw=2; tp;BÞ = Tm × Fmðxw=2; yw=2; tp;BÞ + Tn × Fnðxw=2; yw=2; tp;BÞ:
ð19Þ

4. Algorithm tests

4.1. Tests with simulated data

The ESTARFM algorithm was tested with simulated reflectance
data, which helps to understand its accuracy and reliability. In order to
compare with original STARFM algorithm, we used the same
simulated data as Gao et al. (2006). In detail, a series of 153×153-
pixel fine-resolution images were first simulated by assigning each
pixel a positive value in the range 0 to 1 denoting the reflectance of
each pixel. The coarse-resolution images were produced by scaling up
the fine-resolution images (i.e., each cluster of 17×17 neighboring
pixels in the fine-resolution images was aggregated to create a coarse-
resolution pixel).
We tested four cases: changing reflectance, changing shapes, small

objects and linear objects. The spatial resolutions of fine- and coarse-
resolution simulated images are identical as those of Landsat/ETM and
MODIS. Specifically, three pairs of fine- and coarse-resolution images
acquired at same date were simulated, then the first and last pairs and
the coarse-resolution image of the second pair were used to predict
the fine-resolution image of the second pair, and the predicted and
the real image were compared to assess the accuracy of the new
algorithm. Our results show that the performance of the ESTARFM is
the same as the STARFM for the cases of changing reflectance and
changing shapes.
For the case of small objects, we simulated a series of triplet images

with changing size of the circular objects from 90 to 480 m (from 3
fine-resolution pixels to 16 fine-resolution pixels). As an example of
one image series (Fig. 4), a circular object had constant reflectance of
0.05 and its radius was 150 m (5 fine-resolution pixels). The
background changed reflectance from 0.1 (date 1) to 0.2 (date 2)
and then 0.4 (date 3) (Fig. 4(a), (b), (c)). The coarse-resolution
images were aggregated from the fine-resolution images (Fig. 4(d),
(e),(f)). Fig. 4(g) and (h) are predicted version of Fig. 4(b) using the
ESTARFM and the STARFM respectively. It is obvious that both the
algorithms can predict well the shape of the small circular object.
Moreover, the predicted reflectance of the small circular object from
the ESTARFM is closer to that in Fig. 4(b) compared with the STARFM
and the relative errors of ESTARFM and STARFM are 0% and 131%
respectively. As the circular object changes radius from 480 to 90 m,
the reflectance predicted by ESTARFM remains accurate, while the
prediction error by the original STARFM increases as the object
becomes smaller (Fig. 5). Furthermore, the reflectance predicted by
the original STARFM remains identical to that in Fig. 4(b) until the
object size reaches the coarse-resolution pixel size (object radi-
us=500*20.5 /2=353 m). These results suggest that theoretically
the ESTARFM can predict the reflectance of an object accurately
regardless of object's size. The original STARFM has a significant
limitation in dealing with small objects with a characteristic size less
than that of the coarse-resolution pixel size if “pure” homogeneous
coarse-resolution pixels do not exist in the search window.
For the linear objects case, the simulated fine-resolution images

contained three objects: the background with the reflectance
changing from 0.1 (date 1), to 0.2 (date 2) and then 0.4 (date 3), a
circular object with a constant reflectance of 0.05, and a linear object
with a constant reflectance of 0.5 (Fig. 6(a), (b), (c)). The coarse-
resolution images were aggregated from the fine-resolution images
(Fig. 6(d), (e), (f)). Fig. 6(g) and (h) is the predicted version of Fig. 6Fig. 3. An example of calculating the transition coefficient V.
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(b) using the ESTARFM and the STARFM respectively. The result
shows that both ESTARFM and STARFM can predict the shape of the
linear object well. However, from the quantitative comparison of
the predicted linear object reflectance between the ESTARFM and
the STARFM (Fig. 7), it can be seen that the ESTARFM can predict the
reflectance of the linear object exactly, while the original STARFM
only predicts that part of the linear object within the circle accurately

while the segments outside the circle are predicted with increasing
error.

4.2. Tests with satellite data

The ESTARFM algorithm was applied to the actual Landsat-7
ETM+ and MODIS images. In order to compare to the original
STARFM algorithm, we also used the same preprocessed satellite
images same as Gao et al. (2006) (http://ledaps.nascom.nasa.gov/
ledaps/Tools/StarFM.htm). The resolution of Landsat-7 ETM+ and
MODIS is 30 and 500 m respectively, and the bands are green,
red, and NIR, which correspond with bands 2, 3, and 4 of Landsat-7
ETM+ and bands 4, 1, and 2 of MODIS.

4.2.1. Seasonal changes over forested region
The images are located around 54°N and 104°W, where the

growing season is short and phenology changes rapidly (Gao et al.,
2006). Three pairs of Landsat-7 ETM+ and MODIS images were
acquired on May 24, 2001, July 11, 2001, and August 12, 2001
respectively. Fig. 8 shows the scenes of the images using a NIR–red–
green as red–green–blue composite and identical linear stretches. The
two pairs of Landsat-7 ETM+ and MODIS images acquired at May 24,

Fig. 4. Simulation test on a small object (radius of the circular object is 150 m). The coarse-resolution images (d), (e), (f) are aggregated from the fine-resolution images (a), (b), (c).
Image (g) and (h) are predicted by the ESTARFM and STARFM respectively for comparison with image (b).

Fig. 5. The relationship between the prediction errors and the actual object size for the
ESTARFM and STARFM.
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2001 and August 12, 2001 and the MODIS image acquired at July 11,
2001 were used to predict the image at Landsat spatial resolution at
July 11, 2001. Then, the predicted image was compared with an actual
Landsat ETM+ image acquired on July 11, 2001 to assess the
performance of our algorithm.
Considering the landscape and land cover types of this area, the

size of the search window was set as 3 MODIS pixels (50 ETM+
pixels). The number of land cover classes was set as 4. All input control

parameters were identical to the work in Gao et al. (2006). Fig. 9
shows the Landsat ETM+ images predicted by the ESTARFM and
STARFM respectively. It is clear that the image predicted by ESTARFM
(Fig. 9(b)) is very similar to the actual image (Fig. 9(a)) and contains
most of the spatial details, while the image predicted by the original
STARFM (Fig. 9(c)) seems somewhat “blurry” and has lost some
spatial details.
Scatter plots in Fig. 10 show the relationship of reflectance

between the predicted and the actual values in the July 11, 2001
Landsat ETM+ image for the NIR, red and green bands respectively.
All the data in the scatter plots fall close to the 1:1 line, indicating that
both STARFM and ESTARFM can capture the reflectance changes
caused by phenology. In order to assess the accuracy quantitatively,
the average absolute difference (AAD) and average difference (AD) of
May 24, August 12 and predicted reflectance compared to real
reflectance of July 11 were calculated (Table 1). The predicted surface
reflectance from both algorithms has a smaller difference compared to
the actual July 11 image compared to those from bracketing dates,
indicating that both algorithms have successfully incorporated change
information from MODIS observations to estimate the July 11 ETM+
reflectance. For the green band, the value of AAD is comparable for two
algorithms and the prediction error of both algorithms almost has no

Fig. 6. Simulation test on a linear object. The coarse-resolution images (d), (e), (f) are aggregated from the fine-resolution images (a), (b), (c). Images (g) and (h) are predicted by the
ESTARFM and STARFM respectively for comparison with image (b).

Fig. 7. The spatial profile of reflectance of the linear objects predicted by the ESTARFM
and STARFM.
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bias (AD: −0.0002 vs. −0.0009). For the red band, the prediction
error of the ESTARFM (AAD=0.0032) is smaller than that of the
original STARFM (AAD=0.0044), meanwhile ESTARFM nearly has no
bias (AD=0.0002) compared with the prediction of STARFM
(AD=0.0012). For the NIR band, the prediction of the ESTARFM is
also slightly better than the STARFM (AAD 0.0106 vs. 0.0129).
However, the prediction of ESTARFM is slightly overestimated
compared to that of STARFM (AD: −0.0041 vs. −0.0030). Generally,
the image at Landsat ETM+ resolution predicted by the enhanced
STARFM is more accurate than the original STARFM.

4.2.2. Heterogeneous (mixed) region
Heterogeneous landscapes are challenges for any data fusion

algorithm. To test the enhanced STARFM model, we used a series of
images covering a complex region located in central Virginia around
37°N and 77°W. The major land cover types are forest, bare soil,
water and urban land. Fig. 11 shows the Landsat and MODIS images
acquired on January 25, 2002, February 26, 2002, and May 17, 2002
respectively. These Landsat images were acquired during spring
green-up of the vegetation. Table 2 shows that the reflectance values
are more similar between January 25 and February 26, compared to
the May 17 data, suggesting that the phenology of February 26 was
very similar to that of January 25. From Fig. 11, we can see that there
are many small patches of different land types, including forest, bare
soil, and residential patches.
Fig. 12 shows the predicted images of February 26, 2002 using the

two pairs of Landsat and MODIS images acquired at January 25, 2002
and May 17, 2002 and the MODIS image acquired at February 26,
2002. The fine-resolution image predicted by ESTARFM (Fig. 12(b))
successfully captures almost all of the reflectance changes for small
land patches, and seems to be very close to the actual image. Since
reflectance observed February 26 was close to the reflectance

observed on January 25 due to similar phenology between two
dates, STARFM works well with one input date pair of January 25 as
the base data (Fig. 12(c)). However the image predicted by STARFM
using two input pairs resulted in an unrealistic image due to the large
differences between two input pairs (Fig. 12(d)). This large difference
caused a temporal “smoothing” of reflectance.
Scatter plots in Fig. 13 illustrate the difference between the

predicted surface reflectance and the actual observations. We can see
that the predicted surface reflectance by STARFM using one input pair
and ESTARFM using two input pairs more closely match the actual
observations (1:1 line) than of the results of STARFM using two input
pairs. For all the three bands, the predicted errors of ESTARFM are
slightly larger than those of STARFM using one input pair (AAD values:
green band: 0.0068 vs. 0.0058; red band: 0.0095 vs. 0.0073; NIR band:
0.0135 vs. 0.0132), but in whole the two results predicted by the two
methods are comparable. On the other hand, the prediction errors of
ESTARFM are obviously smaller than STARFM using two input pairs
(AAD values: green band: 0.0068 vs. 0.0075; red band: 0.0095 vs.
0.0111; NIR band: 0.0135 vs. 0.0194). For the whole image, all the
predictions underestimate the surface reflectance slightly, as all the
average differences (AD) of predictions are positive values (Table 2).
The reason that the prediction of STARFM using one input pair is
relatively more accurate than that of ESTARFM is that phenology and
land cover changes are small between the prediction date and the
date of input data, thus the prediction from STARFM using one input
pair has less confusion than two input pairs especially when two input
images change dramatically. However, if STARFM uses two pairs to
predict the fine-resolution reflectance, the reflectance changes cannot
be allocated well to the internal fine-resolution pixels when the
coarse-resolution pixels are mixed, which causes more errors in the
predicted reflectance by STARFM. On the contrary, as shown in the
previous simulation tests, ESTARFM can predict the reflectance of

Fig. 8. NIR–green–blue composites of MODIS surface reflectance (upper row) and Landsat ETM+ surface reflectance (lower row) images on May 24, 2001, July 11, 2001, and August
12, 2001 respectively.
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Fig. 10. Scatter plots of the real reflectance and the predicted ones product by the STARFM and ESTARFM for green, red and NIR-infrared band.

Fig. 9. The actual image observed on July 11, 2001 (a) and its prediction images by the ESTARFM (b) and STARFM (c). The lower row images are the amplifying scenes of the area
marked in the upper row images.
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small objects correctly. Although many landscape patches are smaller
than one MODIS pixel, ESTARFM can adjust the reflectance changes of
mixed MODIS pixels to the reflectance changes of internal Landsat
pixels.
Fig. 14 shows the temporal weight difference between the two

input pairs (calculated from Eq. (19)) in ESTARFM, in which the
negative value presents higher weight contributed by the pair of May
17, and positive value denotes that January 25 pair contributes more
weight. For red and NIR band, the predicted reflectance of most pixels
is mainly dependent on the information from January 25. This is
consistent with the fact that there is smaller phenological difference
between the reflectance observed on January 25 and February 26
(Table 2). For green band, the temporal weights from the two input
pairs are comparable, which are consistent with the results shown in
Table 2 (0.0119 vs. 0.0107). It is evident that the enhanced STARFM
decides the contribution from two input pairs automatically and can
be operational with two input pairs, while the selection of one input
pair in original STARFM lacks of quantitative measures, so the
prediction errors of ESTARFM are smaller than the original STARFM
using two input pairs.

5. Conclusion and discussion

This study described the theoretical basis, implementation process
and performance of an enhanced STARFM (ESTARFM) fusion
algorithm to blend the multi-source remotely sensed data. Compared
to the original STARFM algorithm, this improved algorithm can
produce a synthetic fine-resolution reflectance product more accu-
rately, especially for heterogeneous landscapes.
The ESTARFM has made several improvements to the original

STARFM algorithm. The most significant improvement of the ESTARFM
is using a conversion coefficient to enhance the accuracy of prediction
for heterogeneous landscapes. The STARFM has a limitation in
predicting the reflectance of objects with size significantly smaller
than the coarse-resolution pixel if homogeneous coarse-resolution
pixels cannot be found in the search window, since the STARFM
assumes that the reflectance change of coarse-resolution pixel equals
the change of the fine-resolution pixels within it. This assumption is
reasonable when the coarse-resolution pixels are pure (homogeneous),
but may not hold when the coarse-resolution pixels are mixed. In
reality, it may be hard to find homogeneous coarse-resolution pixels for

Table 1
Average absolute difference and difference of May 24, August 12 and predicted reflectance compared to real reflectance of July 11 for forested region.

ETM+ Average absolute difference (AAD) Average difference (AD)

Band 5/24/01 8/12/01 Prediction 5/24/01 8/12/01 Prediction

STARFM ESTARFM STARFM ESTARFM

Green 0.0043 0.0071 0.0035 0.0035 −0.0014 0.0070 −0.0002 −0.0009
Red 0.0114 0.0058 0.0044 0.0032 −0.0111 0.0053 0.0012 0.0002
NIR 0.0443 0.0155 0.0129 0.0106 0.0441 0.0140 −0.0030 −0.0041

Fig. 11. NIR–green–blue composites of MODIS surface reflectance (upper row) and Landsat ETM+ surface reflectance (lower row) images on January 25, February 26, and May 17,
2002 respectively.
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the 500×500 mMODIS pixel size. The ESTARFM employs a conversion
coefficient to convert the reflectance changes of a mixed coarse-
resolution pixel to the fine-resolution pixels within it, ensuring an
accurate prediction of reflectance for small objects and linear objects.
Secondly, the ESTARFM improves the accuracy of selecting similar

pixels. Selecting similar pixels in a searchwindow is an important step
both in the ESTARFM and STARFM algorithm, because their informa-
tion will be included in the prediction of reflectance for the central
pixel. In the original STARFM algorithm, only two bands (red and NIR)
are used to identify the similar pixels and the similar pixels are
selected from the fine-resolution images acquired at different dates
independently. In the ESTARFM algorithm, all the bands are used to
select the similar pixels and the intersection of the selected results
from all fine-resolution images are extracted. The spectra of many
objects on the land surface changes through time, leading to spectral
features that may be confused with other objects at various times.
Extracting the intersection of the selected results of different date can

ensure that the right similar pixel will be selected with same spectral
trajectory.
Thirdly, for the weight calculation of each similar pixel, the

ESTARFM uses spectral similarity (correlation coefficient) between
fine- and coarse-resolution pixel to represent the homogeneity of a
coarse-resolution pixel instead of spectral distance in the original
STARFM. Using the correlation coefficient of the spectra between fine
and coarse resolution at all observed dates to identify the homoge-
neity of a coarse-resolution pixel not only can avoid some errors in
absolute reflectance value calculation stemming from radiometric
calibration and atmospheric correction, but can also introduce
information on the spectral trajectory into the weight calculation.
Last, the STARFM uses weights to average the prediction of the

fine-resolution reflectance of all similar pixels in the search window
to obtain the reflectance of central pixel, while the ESTARFM uses
weights to combine the reflectance trajectories of all similar pixels.
This change is added to the fine-resolution reflectance observed at

Table 2
Average absolute difference and difference of January 25, May 17 and predicted reflectance compared to real reflectance on February 26 for the complex mixture region.

ETM+ Average absolute difference (AAD) Average difference (AD)

Band 1/25/02 5/17/02 Prediction 1/25/02 5/17/02 Prediction

STARFMa STARFMb ESTARFM STARFMa STARFMb ESTARFM

Green 0.0119 0.0107 0.0058 0.0075 0.0068 0.0113 −0.0031 0.0007 0.0026 0.0028
Red 0.0150 0.0283 0.0073 0.0111 0.0095 0.0143 0.0218 0.0013 0.0040 0.0021
NIR 0.0279 0.1774 0.0132 0.0196 0.0135 0.0269 −0.1722 0.0019 0.0060 0.0022

a The prediction of STARFM using only one pair images on January 25.
b The prediction of STARFM using the two pair images.

Fig. 12. The actual Landsat image observed on February 26, 2002 (a) and its prediction images by the ESTARFM (b), STARFM using one input pair from January 25 (c) and STARFM
using two input pairs (d).
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Fig. 13. Scatter plots of the real reflectance and the predicted ones product by the STARFM and ESTARFM for green, red and NIR-infrared band.

Fig. 14. The temporal weight difference between the two input pairs in ESTARFM: (a) green band, (b) red band, and (c) NIR band.
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base date to predict the fine-resolution reflectance of central pixel at
date tp. The weight averaging function in STARFM leads to predicted
fine-resolution images that seem “hazy”, and smoothes some spatial
details (Fig. 9(c)). On the contrary, the ESTARFM is successful in
keeping the spatial details (Fig. 9(b)), because the main part of the
predicted reflectance is provided by the observed fine-resolution
reflectance of the central pixel at the base date, and thus the contrast
between the central pixel and the neighbor pixels can be preserved.
There are several limitations and constraints while using the

enhanced STARFM approach. First, similar to STARFM, it cannot
accurately predict objects for which shape changes with time and will
thus blur the changing boundary. Secondly, it also cannot accurately
predict short-term, transient changes that are not recorded in any of
the bracketing fine-resolution images, therefore combining ESTARFM
with the STAARCH algorithm (Hilker et al., 2009a) may be a feasible
way to enhance the capability of the new algorithm. Thirdly, sensors
with different spectral band passes may lead to nonlinear relation-
ships. In our study, MODIS and Landsat data show good linear
agreements. However, extra attention may need to be paid when the
ESTARFM is used for other sensors. Also, the assumption that the rate
of reflectance linear change is constant might be not appropriate in
some situation, especially during a long period. Therefore, it is better
to use the images acquired near the prediction time to retrieve the
unknown fine-resolution reflectance. Fourth, there are two para-
meters that should be set in ESTARFM, the size of moving window and
the number of classes, which might limit automated processing. In
practical applications, we can set the parameters according to the
homogeneity of land surface observed from Landsat images. If we
need massive processing (e.g., at global scale), global land cover maps
will be helpful to determine the parameters adaptively. Lastly,
compared with the original STARFM algorithm, the ESTARFM may
be more computationally intensive and require at least two pairs of
fine- and coarse-resolution images acquired at the same date, which is
more than the required by the original STARFM. Accuracy of
prediction may depend on the selection of input image pairs. More
frequent intra-annual imageries to bracket all vegetation phenology
changes are helpful. However, in some cloudy regions where it is
difficult to acquire two high-quality input pairs simultaneously, the
original STARFM may be more appropriate. Though we demonstrated
that a single input pair can produce accurate prediction from original
STARFM, the accuracy of these predictions depends on the similarity
of single input pair to the prediction date. The enhanced STARFM can
weight input pairs based on the similarity to the coarse-resolution
data on the prediction date and thus is more robust when two input
pairs are used.
In conclusion, the ESTARFM algorithm advances the capability for

producing remotely sensed data products with both high spatial
resolution and frequent coverage from multi-source satellite data.
Such a capability is helpful for monitoring intra-annual land surface
and ecological dynamics at the spatial scales most relevant to human
activities.
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